Display options
Share it on

Int J Nanomedicine. 2015 Feb 18;10:1359-73. doi: 10.2147/IJN.S77492. eCollection 2015.

Binding of plasma proteins to titanium dioxide nanotubes with different diameters.

International journal of nanomedicine

Mukta Kulkarni, Ajda Flašker, Maruša Lokar, Katjuša Mrak-Poljšak, Anca Mazare, Andrej Artenjak, Saša Čučnik, Slavko Kralj, Aljaž Velikonja, Patrik Schmuki, Veronika Kralj-Iglič, Snezna Sodin-Semrl, Aleš Iglič

Affiliations

  1. Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
  2. Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia.
  3. Department of Materials Science and Engineering, University of Erlangen Nuremberg, Erlangen, Germany.
  4. Sandoz Biopharmaceuticals Mengeš, Lek Pharmaceuticals dd, Menges, Slovenia.
  5. Department for Materials Synthesis, Institute Jožef Stefan (IJS), Ljubljana, Slovenia.
  6. Faculty of Health Studies, University of Ljubljana, Ljubljana, Slovenia.
  7. Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia ; Faculty of Mathematics, Natural Science and Information Technology, University of Primorska, Koper, Slovenia.

PMID: 25733829 PMCID: PMC4340467 DOI: 10.2147/IJN.S77492

Abstract

Titanium and titanium alloys are considered to be one of the most applicable materials in medical devices because of their suitable properties, most importantly high corrosion resistance and the specific combination of strength with biocompatibility. In order to improve the biocompatibility of titanium surfaces, the current report initially focuses on specifying the topography of titanium dioxide (TiO2) nanotubes (NTs) by electrochemical anodization. The zeta potential (ζ-potential) of NTs showed a negative value and confirmed the agreement between the measured and theoretically predicted dependence of ζ-potential on salt concentration, whereby the absolute value of ζ-potential diminished with increasing salt concentrations. We investigated binding of various plasma proteins with different sizes and charges using the bicinchoninic acid assay and immunofluorescence microscopy. Results showed effective and comparatively higher protein binding to NTs with 100 nm diameters (compared to 50 or 15 nm). We also showed a dose-dependent effect of serum amyloid A protein binding to NTs. These results and theoretical calculations of total available surface area for binding of proteins indicate that the largest surface area (also considering the NT lengths) is available for 100 nm NTs, with decreasing surface area for 50 and 15 nm NTs. These current investigations will have an impact on increasing the binding ability of biomedical devices in the body leading to increased durability of biomedical devices.

Keywords: histone IIA; immunoglobulin G; protein binding; serum amyloid A; β2-glycoprotein I

References

  1. Arterioscler Thromb Vasc Biol. 2011 Jun;31(6):1326-32 - PubMed
  2. Genes Dev. 2001 Sep 1;15(17):2197-202 - PubMed
  3. Histol Histopathol. 2005 Oct;20(4):1295-307 - PubMed
  4. Blood. 2005 Dec 1;106(12):3880-7 - PubMed
  5. J Biomed Mater Res. 2000 Feb;49(2):155-66 - PubMed
  6. Eur J Biochem. 1985 Feb 15;147(1):17-25 - PubMed
  7. J Biomed Mater Res A. 2010 Nov;95(2):350-60 - PubMed
  8. Autoimmunity. 2014 Nov;47(7):438-44 - PubMed
  9. Autoimmunity. 2011 Mar;44(2):149-58 - PubMed
  10. EMBO J. 1999 Nov 15;18(22):6228-39 - PubMed
  11. Lupus. 2006;15(2):87-93 - PubMed
  12. J Biomed Nanotechnol. 2012 Aug;8(4):642-58 - PubMed
  13. Biomaterials. 2010 Jan;31(3):532-40 - PubMed
  14. Nature. 1996 Jan 18;379(6562):219-25 - PubMed
  15. Mater Sci Eng C Mater Biol Appl. 2014 Feb 1;35:100-5 - PubMed
  16. Biomaterials. 2008 Jul;29(20):2941-53 - PubMed
  17. Bioelectrochemistry. 2012 Oct;87:199-203 - PubMed
  18. Macromol Biosci. 2007 May 10;7(5):567-78 - PubMed
  19. Blood. 2006 Mar 1;107(5):1916-24 - PubMed
  20. EMBO J. 1999 Oct 1;18(19):5166-74 - PubMed
  21. J Am Chem Soc. 2003 Nov 26;125(47):14234-5 - PubMed
  22. Redox Rep. 2011;16(6):248-56 - PubMed
  23. J Lipid Res. 2003 Apr;44(4):716-26 - PubMed
  24. Quintessence Int. 1996 Jun;27(6):401-8 - PubMed
  25. Nanotechnology. 2009 Nov 11;20(45):455101 - PubMed
  26. Colloids Surf B Biointerfaces. 2015 May 1;129:47-53 - PubMed
  27. J Mater Sci Mater Med. 2012 Feb;23(2):527-36 - PubMed
  28. Chem Rev. 2014 Oct 8;114(19):9385-454 - PubMed
  29. Amyloid. 2004 Jun;11(2):71-80 - PubMed
  30. Int J Mol Sci. 2013;14(8):15312-29 - PubMed
  31. Biochem Biophys Res Commun. 2010 Jul 23;398(2):266-71 - PubMed
  32. Nanotechnology. 2015 Feb 13;26(6):062002 - PubMed
  33. Biochem J. 1995 Aug 15;310 ( Pt 1):315-21 - PubMed
  34. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2141-5 - PubMed
  35. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3640-4 - PubMed
  36. J Mater Sci Mater Med. 2013 Apr;24(4):1079-91 - PubMed
  37. Int J Nanomedicine. 2009;4:91-7 - PubMed
  38. Autoimmun Rev. 2008 Jul;7(7):523-9 - PubMed
  39. Biochem J. 2012 Jul 1;445(1):125-33 - PubMed
  40. J Immunol Res. 2014;2014:195687 - PubMed
  41. Plast Reconstr Surg. 1998 Aug;102(2):300-8 - PubMed
  42. FEBS Lett. 1979 Jun 1;102(1):183-6 - PubMed
  43. Int J Nanomedicine. 2011;6:1801-16 - PubMed
  44. Open Orthop J. 2008 Apr 25;2:66-78 - PubMed
  45. Annu Rev Biophys Biomol Struct. 1996;25:55-78 - PubMed
  46. J Stem Cells Regen Med. 2007 May 16;2(1):168 - PubMed
  47. J Thromb Haemost. 2006 Feb;4(2):295-306 - PubMed
  48. Biomaterials. 2009 Apr;30(12):2291-301 - PubMed
  49. Thromb Res. 1980 Jul 1-15;19(1-2):225-37 - PubMed
  50. J Laryngol Otol. 1998 Jun;112(6):537-42 - PubMed
  51. Biochem J. 1998 Oct 15;335 ( Pt 2):225-32 - PubMed
  52. Eur J Biochem. 1999 Oct;265(2):501-23 - PubMed
  53. J Biomed Mater Res A. 2012 Feb;100(2):278-85 - PubMed
  54. Small. 2009 Mar;5(6):666-71 - PubMed
  55. Bioelectrochemistry. 2008 Aug;73(2):110-6 - PubMed
  56. Integr Biol (Camb). 2011 Sep;3(9):927-36 - PubMed
  57. Nano Lett. 2009 Sep;9(9):3157-64 - PubMed
  58. Mol Med. 1999 Jun;5(6):351-8 - PubMed
  59. Vet Immunol Immunopathol. 2006 Apr 15;110(3-4):325-30 - PubMed
  60. J Biomed Mater Res A. 2008 Feb;84(2):447-53 - PubMed
  61. Annu Rev Biochem. 1975;44:725-74 - PubMed
  62. Biomaterials. 2009 Mar;30(7):1268-72 - PubMed
  63. Mater Sci Eng C Mater Biol Appl. 2014 Jan 1;34:410-6 - PubMed
  64. Clin Rev Allergy Immunol. 2009 Aug;37(1):49-54 - PubMed
  65. Int J Nanomedicine. 2013;8:4379-89 - PubMed
  66. Biomaterials. 2010 Feb;31(4):706-13 - PubMed
  67. Acta Biomater. 2011 Jun;7(6):2686-96 - PubMed
  68. N Engl J Med. 1999 Feb 11;340(6):448-54 - PubMed
  69. Chem Phys Lipids. 2007 Nov;150(1):49-57 - PubMed

Substances

MeSH terms

Publication Types