Display options
Share it on

Front Pharmacol. 2014 Aug 19;5:191. doi: 10.3389/fphar.2014.00191. eCollection 2014.

The role of iron in neurodegenerative disorders: insights and opportunities with synchrotron light.

Frontiers in pharmacology

Joanna F Collingwood, Mark R Davidson

Affiliations

  1. Warwick Engineering in Biomedicine, School of Engineering, University of Warwick Coventry, UK ; Materials Science and Engineering, University of Florida Gainesville, FL, USA.
  2. Materials Science and Engineering, University of Florida Gainesville, FL, USA ; The Tech Toybox, Gainesville FL, USA.

PMID: 25191270 PMCID: PMC4137459 DOI: 10.3389/fphar.2014.00191

Abstract

There is evidence for iron dysregulation in many forms of disease, including a broad spectrum of neurodegenerative disorders. In order to advance our understanding of the pathophysiological role of iron, it is helpful to be able to determine in detail the distribution of iron as it relates to metabolites, proteins, cells, and tissues, the chemical state and local environment of iron, and its relationship with other metal elements. Synchrotron light sources, providing primarily X-ray beams accompanied by access to longer wavelengths such as infra-red, are an outstanding tool for multi-modal non-destructive analysis of iron in these systems. The micro- and nano-focused X-ray beams that are generated at synchrotron facilities enable measurement of iron and other transition metal elements to be performed with outstanding analytic sensitivity and specificity. Recent developments have increased the scope for methods such as X-ray fluorescence mapping to be used quantitatively rather than semi-quantitatively. Burgeoning interest, coupled with technical advances and beamline development at synchrotron facilities, has led to substantial improvements in resources and methodologies in the field over the past decade. In this paper we will consider how the field has evolved with regard to the study of iron in proteins, cells, and brain tissue, and identify challenges in sample preparation and analysis. Selected examples will be used to illustrate the contribution, and future potential, of synchrotron X-ray analysis for the characterization of iron in model systems exhibiting iron dysregulation, and for human cases of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Friedreich's ataxia, and amyotrophic lateral sclerosis.

Keywords: Alzheimer’s disease; Parkinson’s disease; amyloid aggregation; human brain; iron; magnetic resonance imaging; neuromelanin; synchrotron X-rays

References

  1. J Magn Reson Imaging. 2009 May;29(5):997-1007 - PubMed
  2. J Alzheimers Dis. 2010;19(1):363-72 - PubMed
  3. NMR Biomed. 2004 Nov;17(7):433-45 - PubMed
  4. Biomacromolecules. 2011 May 9;12(5):1629-40 - PubMed
  5. Mol Biosyst. 2010 Jul;6(7):1316-22 - PubMed
  6. Neuroimage. 2009 Oct 1;47(4):1215-20 - PubMed
  7. J Neuropathol Exp Neurol. 1968 Jan;27(1):1-14 - PubMed
  8. J Neurol Neurosurg Psychiatry. 1989 Jun;Suppl:22-8 - PubMed
  9. Biophys J. 1993 Feb;64(2):520-4 - PubMed
  10. Neurochem Res. 2007 Oct;32(10):1640-5 - PubMed
  11. Metallomics. 2011 Jan;3(1):28-37 - PubMed
  12. Neuroreport. 2002 Oct 7;13(14):1817-20 - PubMed
  13. J Alzheimers Dis. 2012;28(1):147-61 - PubMed
  14. J Neurol Psychopathol. 1924 Nov;5(19):195-208 - PubMed
  15. Neuroscience. 2010 Apr 14;166(4):1119-28 - PubMed
  16. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7683-7 - PubMed
  17. J Alzheimers Dis. 2008 Jun;14(2):235-45 - PubMed
  18. J Synchrotron Radiat. 2012 Nov;19(Pt 6):875-86 - PubMed
  19. J Inorg Biochem. 2007 Jun;101(6):957-66 - PubMed
  20. Brain Res Mol Brain Res. 2005 Mar 24;134(1):84-102 - PubMed
  21. Prog Neurobiol. 2011 Aug;94(3):296-306 - PubMed
  22. J Neurol Sci. 1995 Dec;134 Suppl:92-4 - PubMed
  23. Methods Cell Biol. 2008;90:199-216 - PubMed
  24. Methods Mol Biol. 2011;771:293-308 - PubMed
  25. J Parkinsons Dis. 2013;3(4):523-37 - PubMed
  26. Proc Biol Sci. 2003 Aug 7;270 Suppl 1:S62-4 - PubMed
  27. J Synchrotron Radiat. 2001 Mar 1;8(Pt 2):998-1000 - PubMed
  28. Biochem Pharmacol. 2003 Aug 1;66(3):489-94 - PubMed
  29. J Biol Inorg Chem. 2007 Feb;12(2):204-11 - PubMed
  30. J Alzheimers Dis. 2011;25(1):43-6 - PubMed
  31. J Neurochem. 1994 Sep;63(3):793-807 - PubMed
  32. Anal Chem. 2007 Oct 1;79(19):7353-9 - PubMed
  33. J Alzheimers Dis. 2004 Jun;6(3):291-301 - PubMed
  34. Biochim Biophys Acta. 2006 Jul;1758(7):846-57 - PubMed
  35. Antioxid Redox Signal. 2014 Jul 10;21(2):195-210 - PubMed
  36. Mov Disord. 1996 Jan;11(1):8-16 - PubMed
  37. Biochemistry. 1999 Nov 16;38(46):15352-9 - PubMed
  38. Magn Reson Med. 2008 Jul;60(1):41-52 - PubMed
  39. Biol Trace Elem Res. 2002 Winter;90(1-3):227-37 - PubMed
  40. Neurodegeneration. 1995 Dec;4(4):383-90 - PubMed
  41. Free Radic Biol Med. 2001 Feb 15;30(4):447-50 - PubMed
  42. Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12047-52 - PubMed
  43. J Neurochem. 1989 Jun;52(6):1830-6 - PubMed
  44. Neurology. 2007 May 22;68(21):1820-5 - PubMed
  45. Brain. 1999 Apr;122 ( Pt 4):667-73 - PubMed
  46. Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8704-9 - PubMed
  47. Neuroimage. 2012 Jan 16;59(2):1249-60 - PubMed
  48. J Neural Transm (Vienna). 2011 Mar;118(3):301-14 - PubMed
  49. Cerebellum. 2009 Sep;8(3):340-51 - PubMed
  50. Neurosci Lett. 1994 Nov 21;182(1):87-90 - PubMed
  51. Neurodegeneration. 1994 Dec;3(4):267-75 - PubMed
  52. PLoS One. 2007 Sep 26;2(9):e925 - PubMed
  53. J Biol Chem. 2001 Jul 6;276(27):24437-40 - PubMed
  54. J Struct Biol. 2006 Jul;155(1):30-7 - PubMed
  55. Rev Sci Instrum. 2011 Jun;82(6):063111 - PubMed
  56. J Alzheimers Dis. 2010;20(4):1159-65 - PubMed
  57. J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):7-11 - PubMed
  58. Nat Rev Neurosci. 2013 Aug;14(8):551-64 - PubMed
  59. Methods Mol Biol. 2014;1117:757-81 - PubMed
  60. J Magn Reson Imaging. 2010 Jun;31(6):1346-54 - PubMed
  61. Neurology. 2013 Aug 6;81(6):534-40 - PubMed
  62. ACS Chem Neurosci. 2010 Mar 17;1(3):194-203 - PubMed
  63. Brain Res Bull. 1995;36(2):149-53 - PubMed
  64. Biochimie. 2006 Nov;88(11):1591-604 - PubMed
  65. J R Soc Interface. 2014 Mar 26;11(95):20140165 - PubMed
  66. Free Radic Biol Med. 2006 Feb 15;40(4):557-69 - PubMed
  67. Biochim Biophys Acta. 2012 Mar;1820(3):427-36 - PubMed
  68. J Synchrotron Radiat. 1995 Mar 1;2(Pt 2):106-12 - PubMed
  69. Neurodegeneration. 1994 Dec;3(4):277-82 - PubMed
  70. J Biol Chem. 2002 Apr 5;277(14):11970-8 - PubMed
  71. Anal Bioanal Chem. 2006 Feb;384(4):951-7 - PubMed
  72. AJR Am J Roentgenol. 1986 Jul;147(1):103-10 - PubMed
  73. J R Soc Interface. 2005 Mar 22;2(2):33-7 - PubMed
  74. J Alzheimers Dis. 2005 Aug;7(4):267-72 - PubMed
  75. J Struct Biol. 2012 Feb;177(2):239-47 - PubMed
  76. Anal Chem. 2008 Dec 15;80(24):9557-66 - PubMed
  77. J Synchrotron Radiat. 2009 May;16(Pt 3):413-21 - PubMed
  78. Chem Rev. 2009 Oct;109(10):4780-827 - PubMed
  79. Phys Med Biol. 2002 Jul 7;47(13):2327-39 - PubMed
  80. Cerebellum. 2009 Jun;8(2):74-9 - PubMed
  81. PLoS One. 2011 Jan 10;6(1):e15814 - PubMed
  82. Inorg Chem. 2014 Mar 17;53(6):2803-9 - PubMed
  83. Biochemistry. 2001 Sep 25;40(38):11604-13 - PubMed
  84. Physiol Behav. 2005 Jan 17;83(5):793-803 - PubMed
  85. J Alzheimers Dis. 2012;31(4):725-730 - PubMed
  86. J Neurochem. 1995 Aug;65(2):923-6 - PubMed
  87. J Alzheimers Dis. 2009;18(4):811-7 - PubMed
  88. Hum Mol Genet. 2009 Jan 1;18(1):1-11 - PubMed
  89. Neurochem Res. 2006 Mar;31(3):321-31 - PubMed
  90. J Am Chem Soc. 2007 Feb 28;129(8):2210-1 - PubMed
  91. J Neurochem. 1992 Sep;59(3):1168-71 - PubMed
  92. Parkinsonism Relat Disord. 2009 Dec;15 Suppl 3:S212-4 - PubMed
  93. Biophys J. 1998 Dec;75(6):3135-42 - PubMed
  94. Biometals. 2009 Feb;22(1):197-205 - PubMed
  95. Metallomics. 2012 Dec;4(12):1245-54 - PubMed
  96. Mol Cell Proteomics. 2009 Aug;8(8):1832-8 - PubMed
  97. Arch Toxicol. 2010 Nov;84(11):825-89 - PubMed
  98. Neuroimage. 2011 Mar 1;55(1):32-8 - PubMed
  99. Phys Med Biol. 2009 Feb 7;54(3):651-63 - PubMed

Publication Types