Display options
Share it on

Cell Death Dis. 2014 Mar 06;5:e1100. doi: 10.1038/cddis.2014.68.

Galectin-3 is a marker of favorable prognosis and a biologically relevant molecule in neuroblastic tumors.

Cell death & disease

V Veschi, M Petroni, A Bartolazzi, P Altavista, C Dominici, C Capalbo, R Boldrini, A Castellano, H P McDowell, B Pizer, L Frati, I Screpanti, A Gulino, G Giannini

Affiliations

  1. Department of Molecular Medicine, University La Sapienza, Rome, Italy.
  2. 1] Department of Pathology, St. Andrea Hospital, Rome, Italy [2] Pathology Research Laboratory, Cancer Center Karolinska (CCK), Karolinska Hospital, Stockholm, Sweden.
  3. Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Research Center Casaccia, Rome, Italy.
  4. 1] Department of Pediatrics and Infantile Neuropsychiatry, University La Sapienza, Rome, Italy [2] School of Reproductive and Developmental Medicine, Liverpool University, Liverpool, UK.
  5. Division of Pathology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
  6. Division of Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
  7. Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
  8. Department of Experimental Medicine, University La Sapienza, Rome, Italy.

PMID: 24603328 PMCID: PMC3973198 DOI: 10.1038/cddis.2014.68

Abstract

Childhood neuroblastic tumors are characterized by heterogeneous clinical courses, ranging from benign ganglioneuroma (GN) to highly lethal neuroblastoma (NB). Although a refined prognostic evaluation and risk stratification of each tumor patient is becoming increasingly essential to personalize treatment options, currently only few biomolecular markers (essentially MYCN amplification, chromosome 11q status and DNA ploidy) are validated for this purpose in neuroblastic tumors. Here we report that Galectin-3 (Gal-3), a β-galactoside-binding lectin involved in multiple biological functions that has already acquired diagnostic relevance in specific clinical settings, is variably expressed in most differentiated and less aggressive neuroblastic tumors, such as GN and ganglioneuroblastoma, as well as in a subset of NB cases. Gal-3 expression is associated with the INPC histopathological categorization (P<0.001) and Shimada favorable phenotype (P=0.001), but not with other prognostically relevant features. Importantly, Gal-3 expression was associated with a better 5-year overall survival (P=0.003), and with improved cumulative survival in patient subsets at worse prognosis, such as older age at diagnosis, advanced stages or NB histopathological classification. In vitro, Gal-3 expression and nuclear accumulation accompanied retinoic acid-induced cell differentiation in NB cell lines. Forced Gal-3 overexpression increased phenotypic differentiation and substrate adherence, while inhibiting proliferation. Altogether, these findings suggest that Gal-3 is a biologically relevant player for neuroblastic tumors, whose determination by conventional immunohistochemistry might be used for outcome assessment and patient's risk stratification in the clinical setting.

References

  1. Pediatr Blood Cancer. 2012 Aug;59(2):226-32 - PubMed
  2. PLoS One. 2012;7(11):e49139 - PubMed
  3. Clin Cancer Res. 2002 Aug;8(8):2570-5 - PubMed
  4. Nat Genet. 2013 Mar;45(3):279-84 - PubMed
  5. Cancer. 2001 Nov 1;92(9):2451-61 - PubMed
  6. Cancer Lett. 2011 Dec 15;312(1):73-81 - PubMed
  7. Neuroreport. 2007 May 7;18(7):669-73 - PubMed
  8. Gastroenterology. 2005 Nov;129(5):1581-91 - PubMed
  9. Cancer Res. 1999 May 15;59(10):2484-92 - PubMed
  10. Cancer Res. 2005 Sep 15;65(18):8308-16 - PubMed
  11. Lancet Oncol. 2009 Jul;10(7):663-71 - PubMed
  12. Oncogene. 2004 Sep 30;23(45):7527-36 - PubMed
  13. J Clin Oncol. 2009 Jan 10;27(2):289-97 - PubMed
  14. Oncogene. 2008 May 8;27(21):3066-71 - PubMed
  15. Neurosci Lett. 2000 Oct 20;293(1):37-40 - PubMed
  16. J Neurosci Res. 1998 Dec 1;54(5):639-54 - PubMed
  17. Mol Cancer Res. 2011 Jan;9(1):67-77 - PubMed
  18. Cancer Sci. 2010 Nov;101(11):2295-301 - PubMed
  19. Am J Pathol. 1999 Jan;154(1):291-300 - PubMed
  20. Cancer Res. 2001 Sep 15;61(18):6892-8 - PubMed
  21. Int J Clin Oncol. 2011 Aug;16(4):352-8 - PubMed
  22. Lancet. 2001 May 26;357(9269):1644-50 - PubMed
  23. Am J Pathol. 2008 Oct;173(4):1153-64 - PubMed
  24. Thyroid. 2009 Nov;19(11):1167-214 - PubMed
  25. Tumour Biol. 2010 Aug;31(4):277-85 - PubMed
  26. Appl Immunohistochem Mol Morphol. 2012 Jan;20(1):2-7 - PubMed
  27. Clin Exp Metastasis. 1989 Mar-Apr;7(2):201-11 - PubMed
  28. Prostate. 2000 Jul 1;44(2):118-23 - PubMed
  29. BMC Dev Biol. 2009 Feb 12;9:12 - PubMed
  30. Anticancer Res. 2005 Jul-Aug;25(4):3117-21 - PubMed
  31. Cancer. 1999 Jul 15;86(2):364-72 - PubMed
  32. J Biol Chem. 1997 Oct 17;272(42):26693-701 - PubMed
  33. Int J Oncol. 1998 Jun;12(6):1287-90 - PubMed
  34. EMBO J. 1997 Jun 2;16(11):2985-95 - PubMed
  35. Cancer Res. 2006 Mar 15;66(6):3114-9 - PubMed
  36. Br J Cancer. 2000 Dec;83(11):1503-9 - PubMed
  37. Exp Neurol. 2009 May;217(1):7-15 - PubMed
  38. J Biol Chem. 2002 May 3;277(18):15819-27 - PubMed
  39. J Neurooncol. 2013 Jan;111(2):123-32 - PubMed
  40. Cancer Res. 2012 Nov 15;72(22):5757-66 - PubMed
  41. Cancer. 1999 Jul 15;86(2):349-63 - PubMed
  42. J Clin Oncol. 1998 Oct;16(10):3286-94 - PubMed
  43. J Clin Oncol. 1993 Aug;11(8):1466-77 - PubMed
  44. Lancet Oncol. 2008 Jun;9(6):543-9 - PubMed
  45. Discov Med. 2010 Jul;10(50):29-36 - PubMed
  46. J Neurosci. 1994 May;14(5 Pt 2):3231-45 - PubMed
  47. Biochim Biophys Acta. 2006 Apr;1760(4):616-35 - PubMed
  48. Front Oncol. 2012 Oct 12;2:141 - PubMed
  49. J Clin Oncol. 2009 Jan 20;27(3):365-70 - PubMed
  50. Clin Cancer Res. 2011 Dec 15;17(24):7684-92 - PubMed

Substances

MeSH terms

Publication Types