Display options
Share it on

J Biol Chem. 2014 Apr 11;289(15):10293-10307. doi: 10.1074/jbc.M114.549311. Epub 2014 Feb 22.

A mouse model for dominant collagen VI disorders: heterozygous deletion of Col6a3 Exon 16.

The Journal of biological chemistry

Te-Cheng Pan, Rui-Zhu Zhang, Machiko Arita, Sasha Bogdanovich, Sheila M Adams, Sudheer Kumar Gara, Raimund Wagener, Tejvior S Khurana, David E Birk, Mon-Li Chu

Affiliations

  1. Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
  2. Department of Physiology and Pennsylvania Muscle Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104.
  3. Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida 33612.
  4. Center for Biochemistry, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany.
  5. Center for Biochemistry, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany; Center for Molecular Medicine, Medical Faculty Cologne, University of Cologne, Cologne D-50931, Germany.
  6. Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107. Electronic address: [email protected].

PMID: 24563484 PMCID: PMC4036154 DOI: 10.1074/jbc.M114.549311

Abstract

Dominant and recessive mutations in collagen VI genes, COL6A1, COL6A2, and COL6A3, cause a continuous spectrum of disorders characterized by muscle weakness and connective tissue abnormalities ranging from the severe Ullrich congenital muscular dystrophy to the mild Bethlem myopathy. Herein, we report the development of a mouse model for dominant collagen VI disorders by deleting exon 16 in the Col6a3 gene. The resulting heterozygous mouse, Col6a3(+/d16), produced comparable amounts of normal Col6a3 mRNA and a mutant transcript with an in-frame deletion of 54 bp of triple-helical coding sequences, thus mimicking the most common molecular defect found in dominant Ullrich congenital muscular dystrophy patients. Biosynthetic studies of mutant fibroblasts indicated that the mutant α3(VI) collagen protein was produced and exerted a dominant-negative effect on collagen VI microfibrillar assembly. The distribution of the α3(VI)-like chains of collagen VI was not altered in mutant mice during development. The Col6a3(+/d16) mice developed histopathologic signs of myopathy and showed ultrastructural alterations of mitochondria and sarcoplasmic reticulum in muscle and abnormal collagen fibrils in tendons. The Col6a3(+/d16) mice displayed compromised muscle contractile functions and thereby provide an essential preclinical platform for developing treatment strategies for dominant collagen VI disorders.

Keywords: Connective Tissue; Extracellular Matrix; Fibroblast; Muscle; Tendon

References

  1. Biochemistry. 2000 Dec 5;39(48):14960-7 - PubMed
  2. Neuromuscul Disord. 2007 Jul;17(7):547-57 - PubMed
  3. J Biol Chem. 2001 Jun 1;276(22):18947-52 - PubMed
  4. Nat Genet. 2003 Dec;35(4):367-71 - PubMed
  5. Nature. 2002 Nov 28;420(6914):418-21 - PubMed
  6. Muscle Nerve. 2008 Mar;37(3):308-16 - PubMed
  7. Ann Neurol. 2012 Jul;72(1):9-17 - PubMed
  8. J Cell Biochem. 2007 Jun 1;101(3):695-711 - PubMed
  9. Exp Cell Res. 2004 Aug 1;298(1):305-15 - PubMed
  10. Matrix Biol. 2011 Jan;30(1):53-61 - PubMed
  11. Am J Med Genet A. 2005 Jan 30;132A(3):296-301 - PubMed
  12. Matrix Biol. 2011 May;30(4):248-57 - PubMed
  13. Hum Gene Ther. 2012 Dec;23(12):1313-8 - PubMed
  14. Hum Mutat. 2008 Jun;29(6):809-22 - PubMed
  15. Hum Mol Genet. 2005 Jan 15;14(2):279-93 - PubMed
  16. Exp Cell Res. 2004 Jul 1;297(1):49-60 - PubMed
  17. J Biol Chem. 2008 Jul 18;283(29):20170-80 - PubMed
  18. Cell. 2010 Dec 23;143(7):1059-71 - PubMed
  19. Brain. 2009 Nov;132(Pt 11):3175-86 - PubMed
  20. Hum Mol Genet. 1998 Dec;7(13):2135-40 - PubMed
  21. Brain. 1999 Apr;122 ( Pt 4):649-55 - PubMed
  22. J Biol Chem. 2013 May 17;288(20):14320-14331 - PubMed
  23. Nat Rev Neurol. 2011 Jun 21;7(7):379-90 - PubMed
  24. EMBO J. 1989 Jul;8(7):1939-46 - PubMed
  25. Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):991-6 - PubMed
  26. J Biol Chem. 1988 Dec 15;263(35):18601-6 - PubMed
  27. Am J Physiol. 1990 Mar;258(3 Pt 1):C436-42 - PubMed
  28. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10978-83 - PubMed
  29. Neurology. 2008 Oct 14;71(16):1245-53 - PubMed
  30. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7516-21 - PubMed
  31. J Biol Chem. 2002 Jan 18;277(3):1949-56 - PubMed
  32. Neurology. 2007 Sep 4;69(10):1035-42 - PubMed
  33. Matrix Biol. 2012 Apr;31(3):187-96 - PubMed
  34. FEBS J. 2013 May;280(10):2120-37 - PubMed
  35. Skelet Muscle. 2011 Sep 23;1:30 - PubMed
  36. Structure. 2003 Sep;11(9):1179-88 - PubMed
  37. J Biol Chem. 2002 Nov 15;277(46):43557-64 - PubMed
  38. N Engl J Med. 2001 Oct 18;345(16):1167-75 - PubMed
  39. Nat Commun. 2013;4:1964 - PubMed
  40. Am J Hum Genet. 2003 Aug;73(2):355-69 - PubMed
  41. EMBO J. 1990 Feb;9(2):385-93 - PubMed
  42. Neurology. 2002 Feb 26;58(4):593-602 - PubMed
  43. Ann Neurol. 2005 Sep;58(3):400-10 - PubMed
  44. Ann N Y Acad Sci. 1985;460:25-37 - PubMed
  45. Ann Neurol. 2010 Oct;68(4):511-20 - PubMed
  46. J Biol Chem. 2008 Apr 18;283(16):10658-70 - PubMed
  47. EMBO J. 1992 Dec;11(12):4281-90 - PubMed
  48. Connect Tissue Res. 2011 Oct;52(5):422-32 - PubMed
  49. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5225-9 - PubMed
  50. Eur J Biochem. 1994 Apr 1;221(1):177-85 - PubMed

Substances

MeSH terms

Publication Types

Grant support