Display options
Share it on

Planta. 2013 Dec;238(6):1157-69. doi: 10.1007/s00425-013-1959-0. Epub 2013 Sep 22.

Biosynthesis of the carbohydrate moieties of arabinogalactan proteins by membrane-bound β-glucuronosyltransferases from radish primary roots.

Planta

Maya Endo, Toshihisa Kotake, Yoko Watanabe, Kazumasa Kimura, Yoichi Tsumuraya

Affiliations

  1. Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
  2. Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo, 186-8650, Japan.
  3. Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan. [email protected].

PMID: 24057431 PMCID: PMC3898515 DOI: 10.1007/s00425-013-1959-0

Abstract

A membrane fraction from etiolated 6-day-old primary radish roots (Raphanus sativus L. var hortensis) contained β-glucuronosyltransferases (GlcATs) involved in the synthesis of the carbohydrate moieties of arabinogalactan proteins (AGPs). The GlcATs transferred [(14)C]GlcA from UDP-[(14)C]GlcA on to β-(1 → 3)-galactan as an exogenous acceptor substrate, giving a specific activity of 50-150 pmol min(-1) (mg protein)(-1). The enzyme specimen also catalyzed the transfer of [(14)C]GlcA on to an enzymatically modified AGP from mature radish root. Analysis of the transfer products revealed that the transfer of [(14)C]GlcA occurred preferentially on to consecutive (1 → 3)-linked β-Gal chains as well as single branched β-(1 → 6)-Gal residues through β-(1 → 6) linkages, producing branched acidic side chains. The enzymes also transferred [(14)C]GlcA residues on to several oligosaccharides, such as β-(1 → 6)- and β-(1 → 3)-galactotrioses. A trisaccharide, α-L-Araf-(1 → 3)-β-Gal-(1 → 6)-Gal, was a good acceptor, yielding a branched tetrasaccharide, α-L-Araf-(1 → 3)[β-GlcA-(1 → 6)]-β-Gal-(1 → 6)-Gal. We report the first in vitro assay system for β-GlcATs involved in the AG synthesis as a step toward full characterization and cloning.

Keywords: Cell wall; Glucuronic acid; Glycosyltransferase; Raphanus

References

  1. Plant Physiol. 1991 Oct;97(2):551-61 - PubMed
  2. Plant J. 2013 Oct;76(1):128-37 - PubMed
  3. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  4. Plant Physiol. 2008 May;147(1):78-91 - PubMed
  5. Carbohydr Res. 2001 Jun 22;333(1):27-39 - PubMed
  6. Plant Physiol. 2010 Jan;152(1):332-40 - PubMed
  7. J Org Chem. 2004 Aug 6;69(16):5348-53 - PubMed
  8. Plant Physiol. 1988 Jan;86(1):155-60 - PubMed
  9. J Biol Chem. 2010 Apr 30;285(18):13638-45 - PubMed
  10. Annu Rev Plant Biol. 2007;58:137-61 - PubMed
  11. J Biol Chem. 2013 Apr 5;288(14):10132-10143 - PubMed
  12. Int Rev Cytol. 1997;174:195-291 - PubMed
  13. Plant Physiol. 1989 Jun;90(2):567-74 - PubMed
  14. Front Plant Sci. 2012 Jun 27;3:140 - PubMed
  15. Planta. 2000 Apr;210(5):782-91 - PubMed
  16. Planta. 2003 Jun;217(2):271-82 - PubMed
  17. J Exp Bot. 2006;57(10):2353-62 - PubMed
  18. Plant Physiol. 2010 Sep;154(1):78-97 - PubMed
  19. Plant Mol Biol. 2008 Sep;68(1-2):43-59 - PubMed
  20. Biochem J. 1989 Dec 15;264(3):643-9 - PubMed
  21. Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17409-14 - PubMed
  22. J Biol Chem. 1990 May 5;265(13):7207-15 - PubMed
  23. Plant Physiol. 2013 Mar;161(3):1117-26 - PubMed
  24. Plant Physiol. 2012 Oct;160(2):653-66 - PubMed
  25. Carbohydr Res. 2003 Jan 31;338(3):219-30 - PubMed
  26. Biosci Biotechnol Biochem. 2005 Nov;69(11):2170-7 - PubMed
  27. Plant Physiol. 2005 Jul;138(3):1563-76 - PubMed
  28. J Bacteriol. 1978 Mar;133(3):1073-7 - PubMed
  29. Plant Physiol. 1996 Feb;110(2):665-73 - PubMed

Substances

MeSH terms

Publication Types