Display options
Share it on
Full text links
Atypon Free PMC Article

J Virol. 1991 Jun;65(6):3227-37. doi: 10.1128/JVI.65.6.3227-3237.1991.

Bacteriophage HK97 structure: wholesale covalent cross-linking between the major head shell subunits.

Journal of virology

M P Popa, T A McKelvey, J Hempel, R W Hendrix

Affiliations

  1. Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260.

PMID: 1709700 PMCID: PMC240980 DOI: 10.1128/JVI.65.6.3227-3237.1991
Free PMC Article

Abstract

We describe initial genetic and structural characterizations of HK97, a temperate bacteriophage of Escherichia coli. We isolated 28 amber mutants, characterized them with respect to what phage-related structures they make, and mapped many of them to restriction fragments of genomic DNA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of HK97 virions revealed nine different protein species plus a substantial amount of material that failed to enter the gel, apparently because it is too large. Five proteins are tail components and are assigned functions as tail fiber subunit, tail length template, and major shaft subunit (two and possibly three species). The four remaining proteins and the material that did not enter the gel are head components. One of these proteins is assigned as the portal subunit, and the remaining three head proteins in the gel and the material that did not enter the gel are components of the head shell. All of the head shell protein species have apparent molecular masses well in excess of 100 kDa; they share amino acid sequence with each other and also with a 42-kDa protein that is found in infected lysates and as the major component of prohead structures that accumulate in infections by one of the amber mutants. We propose that all of the head shell species found in mature heads are covalently cross-linked oligomers derived from the 42-kDa precursor during head shell maturation.

Similar articles

Cited by

Hayes S, Murphy J, Mahony J, Lugli GA, Ventura M, Noben JP, Franz CM, Neve H, Nauta A, Van Sinderen D.
Front Microbiol. 2017 Feb 02;8:107. doi: 10.3389/fmicb.2017.00107. eCollection 2017.
PMID: 28210242

References

  1. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1451-5 - PubMed
  2. J Mol Biol. 1973 May 5;76(1):45-60 - PubMed
  3. Annu Rev Biochem. 1968;37:547-70 - PubMed
  4. J Mol Biol. 1966 Nov 14;21(2):313-34 - PubMed
  5. J Mol Biol. 1975 Jan 15;91(2):187-99 - PubMed
  6. Virology. 1976 Jul 1;72(1):147-53 - PubMed
  7. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1462-6 - PubMed
  8. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  9. Proc Natl Acad Sci U S A. 1967 Feb;57(2):306-13 - PubMed
  10. Cold Spring Harb Symp Quant Biol. 1962;27:1-24 - PubMed
  11. Virology. 1957 Dec;4(3):509-21 - PubMed
  12. Science. 1990 Nov 2;250(4981):651-7 - PubMed
  13. Annu Rev Microbiol. 1985;39:109-29 - PubMed
  14. Nature. 1987 May 7-13;327(6117):73-5 - PubMed
  15. J Mol Biol. 1986 Oct 20;191(4):721-5 - PubMed
  16. Nature. 1985 Jan 3-9;313(5997):64-7 - PubMed
  17. Virology. 1980 Jan 15;100(1):212-6 - PubMed
  18. J Gen Virol. 1980 Sep;50(1):217-20 - PubMed
  19. Eur J Biochem. 1982 Apr 1;123(2):253-60 - PubMed
  20. Virology. 1983 Apr 30;126(2):429-48 - PubMed
  21. Virology. 1983 Jan 15;124(1):109-20 - PubMed
  22. Anal Biochem. 1982 Mar 1;120(2):302-11 - PubMed
  23. Science. 1977 Apr 8;196(4286):161-9 - PubMed
  24. J Mol Biol. 1979 Nov 5;134(3):575-94 - PubMed
  25. J Mol Biol. 1979 Jun 15;131(1):1-14 - PubMed
  26. J Biol Chem. 1977 Feb 10;252(3):1102-6 - PubMed
  27. J Biol Chem. 1979 Aug 10;254(15):7208-12 - PubMed
  28. Anal Biochem. 1979 Feb;93(1):153-7 - PubMed
  29. Eur J Biochem. 1977 Feb 15;73(1):239-46 - PubMed
  30. Jpn J Microbiol. 1976 Oct;20(5):385-96 - PubMed
  31. J Mol Biol. 1976 Sep 5;106(1):187-221 - PubMed
  32. J Mol Biol. 1974 Sep 15;88(2):547-50 - PubMed
  33. J Mol Biol. 1973 Aug 25;78(4):589-600 - PubMed
  34. Virology. 1974 Sep;61(1):156-9 - PubMed

Substances

MeSH terms

Publication Types

Grant support

LinkOut - more resources