Display options
Share it on

Front Pharmacol. 2012 Aug 23;3:155. doi: 10.3389/fphar.2012.00155. eCollection 2012.

Perlecan and the blood-brain barrier: beneficial proteolysis?.

Frontiers in pharmacology

Jill Roberts, Michael P Kahle, Gregory J Bix

Affiliations

  1. Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA.

PMID: 22936915 PMCID: PMC3425914 DOI: 10.3389/fphar.2012.00155

Abstract

The cerebral microvasculature is important for maintaining brain homeostasis. This is achieved via the blood-brain barrier (BBB), composed of endothelial cells with specialized tight junctions, astrocytes, and a basement membrane (BM). Prominent components of the BM extracellular matrix (ECM) include fibronectin, laminin, collagen IV, and perlecan, all of which regulate cellular processes via signal transduction through various cell membrane bound ECM receptors. Expression and proteolysis of these ECM components can be rapidly altered during pathological states of the central nervous system. In particular, proteolysis of perlecan, a heparan sulfate proteoglycan, occurs within hours following ischemia induced by experimental stroke. Proteolysis of ECM components following stroke results in the degradation of the BM and further disruption of the BBB. While it is clear that such proteolysis has negative consequences for the BBB, we propose that it also may lead to generation of ECM protein fragments, including the C-terminal domain V (DV) of perlecan, that potentially have a positive influence on other aspects of CNS health. Indeed, perlecan DV has been shown to be persistently generated after stroke and beneficial as a neuroprotective molecule and promoter of post-stroke brain repair. This mini-review will discuss beneficial roles of perlecan protein fragment generation within the brain during stroke.

Keywords: blood-brain barrier; brain; domain V; extracellular matrix; perlecan; stroke; vascular basement membrane

References

  1. Glycobiology. 2007 Sep;17(9):897-905 - PubMed
  2. Vascul Pharmacol. 2002 Jun;38(6):323-37 - PubMed
  3. Development. 1993 Dec;119(4):1079-91 - PubMed
  4. J Oral Pathol Med. 2011 Aug;40(7):552-9 - PubMed
  5. Trends Neurosci. 2001 Dec;24(12):719-25 - PubMed
  6. Curr Pharm Des. 2009;15(12):1277-94 - PubMed
  7. Neuroscience. 1998 Oct;86(4):1245-57 - PubMed
  8. J Clin Invest. 2011 Aug;121(8):3005-23 - PubMed
  9. Arterioscler Thromb Vasc Biol. 2006 Sep;26(9):1966-75 - PubMed
  10. Glia. 2011 Dec;59(12):1822-40 - PubMed
  11. Brain Res. 2012 Feb 15;1438:65-74 - PubMed
  12. J Neurochem. 2011 Nov;119(4):760-71 - PubMed
  13. Curr Pharm Des. 2008;14(16):1581-93 - PubMed
  14. Neuron. 2008 Jan 24;57(2):178-201 - PubMed
  15. Cell Mol Neurobiol. 2012 Mar;32(2):159-65 - PubMed
  16. J Cell Biol. 1999 Nov 29;147(5):1109-22 - PubMed
  17. Neurobiol Aging. 2012 Jul;33(7):1379-88 - PubMed
  18. Mol Cell Neurosci. 2008 May;38(1):43-52 - PubMed
  19. Glia. 2004 Mar;45(4):325-37 - PubMed
  20. Development. 2004 Apr;131(7):1619-28 - PubMed
  21. J Biol Chem. 1992 Jun 5;267(16):10931-4 - PubMed
  22. Dev Dyn. 1997 Oct;210(2):130-45 - PubMed
  23. Stroke. 2008 Jan;39(1):191-7 - PubMed
  24. Microsc Res Tech. 2008 May;71(5):339-48 - PubMed
  25. Stroke. 2011 Nov;42(11):3323-8 - PubMed
  26. J Neurochem. 2002 Oct;83(2):381-9 - PubMed
  27. Dev Neurobiol. 2011 Nov;71(11):1018-39 - PubMed
  28. Biochemistry. 2008 Oct 28;47(43):11174-83 - PubMed
  29. Stroke. 2004 Apr;35(4):998-1004 - PubMed
  30. Nat Genet. 1999 Nov;23(3):354-8 - PubMed
  31. FASEB J. 1990 Apr 1;4(6):1577-90 - PubMed
  32. J Cell Biol. 2004 Jul 5;166(1):97-109 - PubMed
  33. Dev Dyn. 2003 Jun;227(2):170-84 - PubMed
  34. BMC Dev Biol. 2007 Apr 05;7:29 - PubMed
  35. J Biol Chem. 2005 Feb 25;280(8):7080-7 - PubMed
  36. Neuropathol Appl Neurobiol. 2013 Apr;39(3):270-83 - PubMed

Publication Types

Grant support