Display options
Share it on

J Zhejiang Univ Sci B. 2012 Sep;13(9):676-94. doi: 10.1631/jzus.B1100339.

Simulation of biatrial conduction via different pathways during sinus rhythm with a detailed human atrial model.

Journal of Zhejiang University. Science. B

Dong-dong Deng, Ying-lan Gong, Guo-fa Shou, Pei-feng Jiao, Heng-gui Zhang, Xue-song Ye, Ling Xia

Affiliations

  1. College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China.

PMID: 22949359 PMCID: PMC3437366 DOI: 10.1631/jzus.B1100339

Abstract

In order to better understand biatrial conduction, investigate various conduction pathways, and compare the differences between isotropic and anisotropic conductions in human atria, we present a simulation study of biatrial conduction with known/assumed conduction pathways using a recently developed human atrial model. In addition to known pathways: (1) Bachmann's bundle (BB), (2) limbus of fossa ovalis (LFO), and (3) coronary sinus (CS), we also hypothesize that there exist two fast conduction bundles that connect the crista terminalis (CT), LFO, and CS. Our simulation demonstrates that use of these fast conduction bundles results in a conduction pattern consistent with experimental data. The comparison of isotropic and anisotropoic conductions in the BB case showed that the atrial working muscles had small effect on conduction time and conduction speed, although the conductivities assigned in anisotropic conduction were two to four times higher than the isotropic conduction. In conclusion, we suggest that the hypothesized intercaval bundles play a significant role in the biatrial conduction and that myofiber orientation has larger effects on the conduction system than the atrial working muscles. This study presents readers with new insights into human atrial conduction.

References

  1. Circulation. 2009 Mar 31;119(12):1562-75 - PubMed
  2. Clin Anat. 2009 Jan;22(1):99-113 - PubMed
  3. Anat Rec (Hoboken). 2008 Feb;291(2):204-15 - PubMed
  4. Comput Math Methods Med. 2012;2012:891070 - PubMed
  5. Europace. 2007 Nov;9 Suppl 6:vi3-9 - PubMed
  6. Circulation. 2003 Feb 11;107(5):733-9 - PubMed
  7. Circ Res. 2000 Sep 29;87(7):E25-36 - PubMed
  8. J Cardiovasc Electrophysiol. 2002 Dec;13(12):1264-71 - PubMed
  9. Am J Physiol. 1982 Mar;242(3):H421-8 - PubMed
  10. J Am Coll Cardiol. 2010 Oct 19;56(17):1386-94 - PubMed
  11. Am J Physiol Heart Circ Physiol. 2000 Jul;279(1):H397-421 - PubMed
  12. J Electrocardiol. 2001 Jan;34(1):1-14 - PubMed
  13. Am J Cardiol. 2003 Jun 15;91(12):1482-5, A8 - PubMed
  14. Eur Heart J. 1998 Feb;19(2):293-300 - PubMed
  15. J Cardiovasc Electrophysiol. 2004 May;15(5):524-31 - PubMed
  16. Pacing Clin Electrophysiol. 2002 Mar;25(3):342-50 - PubMed
  17. Circulation. 1999 Oct 26;100(17):1791-7 - PubMed
  18. Br Heart J. 1979 Jan;41(1):28-32 - PubMed
  19. IEEE Trans Biomed Eng. 2001 Nov;48(11):1229-37 - PubMed
  20. J Cardiovasc Electrophysiol. 1999 Nov;10(11):1525-33 - PubMed
  21. Ann Biomed Eng. 1999 May-Jun;27(3):289-97 - PubMed
  22. IEEE Trans Biomed Eng. 2006 Nov;53(11):2139-47 - PubMed
  23. Int J Cardiol. 2010 Dec 3;145(3):455-60 - PubMed
  24. Circulation. 1985 Aug;72(2):249-57 - PubMed
  25. J Cardiovasc Electrophysiol. 2007 Apr;18(4):402-8 - PubMed
  26. Am J Physiol. 1998 Jul;275(1):H301-21 - PubMed
  27. Heart. 2002 Oct;88(4):406-11 - PubMed
  28. Circulation. 2002 Apr 30;105(17):2092-8 - PubMed
  29. Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1573-89 - PubMed
  30. Circulation. 1988 Jun;77(6):1221-37 - PubMed
  31. Med Biol Eng Comput. 1993 Jul;31(4):384-7 - PubMed
  32. Invest Radiol. 2007 Nov;42(11):777-89 - PubMed
  33. Cardiovasc Res. 2002 May;54(2):325-36 - PubMed
  34. J Cardiovasc Electrophysiol. 2003 Oct;14(10 Suppl):S172-9 - PubMed
  35. IEEE Trans Biomed Eng. 2003 Apr;50(4):412-20 - PubMed
  36. Circ Res. 1998 Sep 7;83(5):541-51 - PubMed
  37. Circ Res. 2006 Dec 8;99(12):1384-93 - PubMed
  38. Pacing Clin Electrophysiol. 2005 Aug;28(8):855-63 - PubMed
  39. Circ Res. 1998 Jan 9-23;82(1):63-81 - PubMed
  40. Circ Res. 1998 Aug 24;83(4):448-62 - PubMed
  41. Radiology. 2008 Aug;248(2):447-57 - PubMed
  42. Prog Cardiovasc Dis. 2002 Nov-Dec;45(3):235-67 - PubMed
  43. Europace. 2010 May;12(5):719-25 - PubMed
  44. Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1398-410 - PubMed
  45. Circ Res. 2007 Oct 12;101(8):839-47 - PubMed
  46. Circulation. 2000 Feb 15;101(6):647-52 - PubMed
  47. J Electrocardiol. 1993 Oct;26(4):245-61 - PubMed
  48. J Cardiovasc Electrophysiol. 2006 Feb;17(2):120-7 - PubMed
  49. Circulation. 1996 Nov 15;94(10):2649-61 - PubMed
  50. Philos Trans A Math Phys Eng Sci. 2006 Jun 15;364(1843):1465-81 - PubMed
  51. Am J Physiol. 1980 Sep;239(3):H406-15 - PubMed
  52. J Cardiovasc Electrophysiol. 1996 May;7(5):424-44 - PubMed
  53. Am J Physiol. 1995 Sep;269(3 Pt 2):H877-87 - PubMed
  54. J Theor Biol. 2008 Oct 7;254(3):674-90 - PubMed
  55. Circulation. 2004 Oct 12;110(15):2083-9 - PubMed
  56. Prog Biophys Mol Biol. 2003 May-Jul;82(1-3):111-20 - PubMed
  57. Clin Anat. 2009 Jan;22(1):52-63 - PubMed
  58. Am J Physiol Heart Circ Physiol. 2006 Dec;291(6):H2911-23 - PubMed
  59. J Interv Card Electrophysiol. 2009 Aug;25(2):117-22 - PubMed
  60. Anat Rec. 2000 Sep 1;260(1):81-91 - PubMed
  61. Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2393-400 - PubMed
  62. Am J Physiol. 1989 Nov;257(5 Pt 2):H1446-57 - PubMed
  63. Br Heart J. 1995 Jun;73(6):559-65 - PubMed
  64. Europace. 2009 Feb;11(2):169-77 - PubMed
  65. Prog Biophys Mol Biol. 2008 Sep;98(1):24-37 - PubMed
  66. J Cardiovasc Electrophysiol. 2002 Jan;13(1):1-10 - PubMed

MeSH terms

Publication Types