Display options
Share it on

J Appl Physiol (1985). 2012 Sep 01;113(5):775-84. doi: 10.1152/japplphysiol.01153.2011. Epub 2012 Jul 12.

An increase in the redox state during reperfusion contributes to the cardioprotective effect of GIK solution.

Journal of applied physiology (Bethesda, Md. : 1985)

I W Suranadi, L Demaison, V Chaté, S Peltier, M Richardson, X Leverve

Affiliations

  1. Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia.

PMID: 22797310 PMCID: PMC3472475 DOI: 10.1152/japplphysiol.01153.2011

Abstract

This study aimed at determining whether glucose-insulin-potassium (GIK) solutions modify the NADH/NAD(+) ratio during postischemic reperfusion and whether their cardioprotective effect can be attributed to this change in part through reduction of the mitochondrial reactive oxygen species (ROS) production. The hearts of 72 rats were perfused with a buffer containing glucose (5.5 mM) and hexanoate (0.5 mM). They were maintained in normoxia for 30 min and then subjected to low-flow ischemia (0.5% of the preischemic coronary flow for 20 min) followed by reperfusion (45 min). From the beginning of ischemia, the perfusate was subjected to various changes: enrichment with GIK solution, enrichment with lactate (2 mM), enrichment with pyruvate (2 mM), enrichment with pyruvate (2 mM) plus ethanol (2 mM), or no change for the control group. Left ventricular developed pressure, heart rate, coronary flow, and oxygen consumption were monitored throughout. The lactate/pyruvate ratio of the coronary effluent, known to reflect the cytosolic NADH/NAD(+) ratio and the fructose-6-phosphate/dihydroxyacetone-phosphate (F6P/DHAP) ratio of the reperfused myocardium, were evaluated. Mitochondrial ROS production was also estimated. The GIK solution improved the recovery of mechanical function during reperfusion. This was associated with an enhanced cytosolic NADH/NAD(+) ratio and reduced mitochondrial ROS production. The cardioprotection was also observed when the hearts were perfused with fluids known to increase the cytosolic NADH/NAD(+) ratio (lactate, pyruvate plus ethanol) compared with the other fluids (control and pyruvate groups). The hearts with a high mechanical recovery also displayed a low F6P/DHAP ratio, suggesting that an accelerated glycolysis rate may be responsible for increased cytosolic NADH production. In conclusion, the cardioprotection induced by GIK solutions could occur through an increase in the cytosolic NADH/NAD(+) ratio, leading to a decrease in mitochondrial ROS production.

References

  1. J Am Coll Cardiol. 2003 Sep 3;42(5):784-91 - PubMed
  2. Eur J Pharmacol. 2001 Apr 20;418(1-2):105-10 - PubMed
  3. Cardiovasc Res. 1994 Aug;28(8):1231-7 - PubMed
  4. Mol Cell Biochem. 1992 Dec 2;118(1):1-14 - PubMed
  5. Ann Thorac Surg. 1995 Aug;60(2):411-6 - PubMed
  6. Am J Physiol. 1994 Aug;267(2 Pt 2):H462-70 - PubMed
  7. Circulation. 1996 Jan 1;93(1):135-42 - PubMed
  8. Am J Cardiol. 1997 Aug 4;80(3A):3A-10A - PubMed
  9. Basic Res Cardiol. 1984 Jan-Feb;79(1):49-58 - PubMed
  10. Am Heart J. 2004 Jul;148(1):e3 - PubMed
  11. Am Heart J. 1987 Jul;114(1 Pt 1):54-8 - PubMed
  12. Eur J Biochem. 1989 Mar 1;180(1):221-33 - PubMed
  13. Resuscitation. 2002 Dec;55(3):329-36 - PubMed
  14. Int J Hypertens. 2011;2011:738689 - PubMed
  15. J Cardiovasc Pharmacol. 1983 Jan-Feb;5(1):35-43 - PubMed
  16. Am J Physiol Heart Circ Physiol. 2004 Aug;287(2):H601-7 - PubMed
  17. J Thromb Thrombolysis. 1998;5(1):25-27 - PubMed
  18. Am J Cardiovasc Drugs. 2001;1(1):23-35 - PubMed
  19. Diabetologia. 2001 Dec;44(12):2165-70 - PubMed
  20. J Mol Cell Cardiol. 2000 May;32(5):757-64 - PubMed
  21. Circ Res. 1991 Mar;68(3):714-25 - PubMed
  22. Circulation. 1998 Jul 7;98(1):31-9 - PubMed
  23. J Mol Cell Cardiol. 2002 Feb;34(2):223-31 - PubMed
  24. JAMA. 1991 Jan 16;265(3):386-90 - PubMed
  25. Am J Cardiol. 1992 Jul 1;70(1):65-8 - PubMed
  26. Ann Thorac Surg. 2003 Feb;75(2):S721-8 - PubMed
  27. Zhonghua Nei Ke Za Zhi. 2003 Mar;42(3):148-52 - PubMed
  28. J Cardiovasc Pharmacol. 1994 Dec;24(6):921-8 - PubMed
  29. J Cardiovasc Surg (Torino). 1996 Jun;37(3):269-74 - PubMed
  30. Scand Cardiovasc J. 2002 Feb;36(1):19-26 - PubMed
  31. Cardiovasc Res. 1993 Jun;27(6):1088-93 - PubMed
  32. Clin Exp Pharmacol Physiol. 2003 Mar;30(3):145-52 - PubMed
  33. Mol Cell Biochem. 2001 Aug;224(1-2):103-16 - PubMed
  34. J Thorac Cardiovasc Surg. 1988 May;95(5):788-98 - PubMed
  35. Can J Biochem. 1976 Jun;54(6):539-45 - PubMed
  36. Mol Cell Biochem. 1989 Jun 27-Jul 24;88(1-2):175-9 - PubMed
  37. Circulation. 1998 Nov 24;98(21):2227-34 - PubMed
  38. Eur J Cardiol. 1981;12(6):377-89 - PubMed
  39. Circ Res. 2003 Aug 8;93(3):e33-7 - PubMed
  40. J Mol Cell Cardiol. 1995 Jul;27(7):1369-81 - PubMed
  41. Am J Physiol Heart Circ Physiol. 2001 Oct;281(4):H1561-7 - PubMed
  42. Cardiovasc Drugs Ther. 2000 Dec;14(6):615-23 - PubMed
  43. Am J Physiol. 1999 Aug;277(2):H626-34 - PubMed
  44. Am J Physiol Heart Circ Physiol. 2000 Jul;279(1):H361-7 - PubMed
  45. Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1345-51 - PubMed
  46. Am J Physiol. 1986 Jan;250(1 Pt 2):H114-20 - PubMed
  47. Curr Med Res Opin. 2001;17(3):153-8 - PubMed
  48. Can J Cardiol. 1990 Jan-Feb;6(1):38-46 - PubMed
  49. Br J Pharmacol. 1990 Jan;99(1):5-6 - PubMed
  50. PLoS One. 2008 Jul 16;3(7):e2682 - PubMed
  51. J Mol Cell Cardiol. 1983 Jun;15(6):369-82 - PubMed
  52. Curr Opin Crit Care. 2003 Oct;9(5):375-83 - PubMed
  53. Am J Cardiol. 1997 Aug 4;80(3A):90A-93A - PubMed
  54. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):70-4 - PubMed
  55. J Cardiovasc Pharmacol. 1999 Nov;34(5):651-9 - PubMed

Substances

MeSH terms

Publication Types