Display options
Share it on
Full text links
Silverchair Information Systems Free PMC Article

Biochem J. 1990 Aug 15;270(1):109-18. doi: 10.1042/bj2700109.

The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.

The Biochemical journal

J M Wrigglesworth, C E Cooper, M A Sharpe, P Nicholls

Affiliations

  1. Biochemistry Section, King's College, London, U.K.

PMID: 2168698 PMCID: PMC1131685 DOI: 10.1042/bj2700109
Free PMC Article

Abstract

1. The flux pathways for H+ and K+ movements into and out of proteoliposomes incorporating cytochrome c oxidase have been investigated as a function of the electrical and geometrical properties of the vesicles. 2. The respiration-induced pH gradient (delta pH) and membrane potential (delta psi) are mutually dependent and individually sensitive to the permeability properties of the membrane. A lowering or abolition of delta psi by the addition of valinomycin increased the steady-state level of delta pH. Conversely, removal of delta pH by the addition of nigericin resulted in a higher steady-state delta psi. 3. Vesicles prepared by sonication followed by centrifugation maintained similar pH gradients at steady state to those in vesicles prepared by dialysis, although the time taken to reach steady state was longer. Higher pH gradients can be induced in non-centrifuged sonicated preparations. 4. No significant differences were found in H+ and K+ permeability between proteoliposomes prepared by dialysis or by sonication. The permeability coefficient of the vesicle bilayers for H+ was 6.1 x 10(-4) cm.s-1 and that for K+ was 7.5 x 10(-10) cm.s-1. An initial fast change in internal pH was seen on the addition of external acid or alkali, followed by a slower, ionophore-sensitive, change. The initial fast phase can be increased by the lipid-soluble base dibucaine and the weak acid oleate. In the absence of ionophores, increasing concentrations of oleate increased the rate of H+ translocation to a level similar to that seen in the presence of nigericin. Internal alkalinization could also be induced by oleate upon the addition of potassium sulphate. 5. The initial, pre-steady-state and steady-state delta pH and delta psi changes can be simulated using a model in which the enzyme responds to both delta pH and delta psi components of the protonmotive force. At steady state, the electrogenic entry of K+ is countered by electroneutral exit via a K+/H+ exchange. 6. The permeability coefficient, PH, calculated from H+ flux under steady-state turnover conditions, was approx. 100 times higher than the corresponding 'passive' measurements of PH. Under conditions of oxidase turnover, the vesicles appear to be intrinsically more permeable to protons.

Similar articles

Show all 30 similar articles

References

  1. Biochem J. 1989 Feb 1;257(3):783-7 - PubMed
  2. Mol Aspects Med. 1988;10(3):223-32 - PubMed
  3. Biochemistry. 1989 Apr 18;28(8):3156-60 - PubMed
  4. Biochemistry. 1989 May 16;28(10):4181-7 - PubMed
  5. Biochemistry. 1990 Apr 24;29(16):3865-71 - PubMed
  6. J Biophys Biochem Cytol. 1960 Jul;7:589-601 - PubMed
  7. Biochem J. 1984 May 1;219(3):719-26 - PubMed
  8. J Biol Chem. 1972 Feb 25;247(4):1338-9 - PubMed
  9. Biochim Biophys Acta. 1972 Sep 20;275(3):485-90 - PubMed
  10. J Biol Chem. 1972 Oct 25;247(20):6375-83 - PubMed
  11. Fed Proc. 1973 Sep;32(9):1988-92 - PubMed
  12. Annu Rev Biophys Bioeng. 1976;5:119-75 - PubMed
  13. J Biol Chem. 1976 Nov 25;251(22):7072-6 - PubMed
  14. Biochim Biophys Acta. 1979 Jul 10;547(1):36-46 - PubMed
  15. Biochem J. 1979 Jul 15;182(1):149-56 - PubMed
  16. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2038-42 - PubMed
  17. Biochim Biophys Acta. 1980 Aug 4;600(2):387-97 - PubMed
  18. J Biol Chem. 1981 Mar 25;256(6):2736-41 - PubMed
  19. Biochemistry. 1981 Mar 17;20(6):1534-8 - PubMed
  20. J Biol Chem. 1982 Feb 25;257(4):1579-82 - PubMed
  21. Proc Natl Acad Sci U S A. 1983 Jan;80(1):165-8 - PubMed
  22. Biochem J. 1983 Jan 15;210(1):199-205 - PubMed
  23. Biochim Biophys Acta. 1984 Apr 26;765(1):30-7 - PubMed
  24. Biochemistry. 1984 Apr 10;23(8):1640-5 - PubMed
  25. Biochim Biophys Acta. 1984 Nov 7;777(2):194-200 - PubMed
  26. Biochim Biophys Acta. 1984 Dec 17;768(3-4):319-47 - PubMed
  27. Biochim Biophys Acta. 1985 Mar 6;833(3):386-95 - PubMed
  28. Am J Physiol. 1985 Mar;248(3 Pt 1):C372-8 - PubMed
  29. J Membr Biol. 1985;84(2):183-90 - PubMed
  30. J Inorg Biochem. 1985 Mar-Apr;23(3-4):311-6 - PubMed
  31. J Biochem Biophys Methods. 1985 Aug;11(2-3):95-108 - PubMed
  32. Arch Biochem Biophys. 1986 Mar;245(2):436-45 - PubMed
  33. Eur J Biochem. 1986 Mar 17;155(3):453-68 - PubMed
  34. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):167-88 - PubMed
  35. Biochim Biophys Acta. 1987 Apr 9;898(2):187-95 - PubMed
  36. J Biol Chem. 1987 Mar 25;262(9):4360-6 - PubMed
  37. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6443-6 - PubMed
  38. Biochem J. 1987 Sep 15;246(3):737-44 - PubMed
  39. Biochim Biophys Acta. 1988 Feb 24;947(1):209-46 - PubMed
  40. Eur J Biochem. 1988 Apr 15;173(2):401-9 - PubMed
  41. Biochim Biophys Acta. 1988 Jun 7;941(1):39-47 - PubMed
  42. Eur J Biochem. 1988 May 2;173(3):637-44 - PubMed
  43. Eur J Biochem. 1988 May 2;173(3):645-51 - PubMed
  44. Biochemistry. 1988 Aug 23;27(17):6307-14 - PubMed
  45. FEBS Lett. 1989 Jun 19;250(1):9-21 - PubMed

Substances

MeSH terms

Publication Types

Grant support

LinkOut - more resources