Display options
Share it on

PLoS One. 2010 Apr 29;5(4):e10394. doi: 10.1371/journal.pone.0010394.

Bactericidal performance of visible-light responsive titania photocatalyst with silver nanostructures.

PloS one

Ming-Show Wong, Der-Shan Sun, Hsin-Hou Chang

Affiliations

  1. Department of Materials Science and Engineering, National Dong-Hwa University, Hualien, Taiwan.

PMID: 20454454 PMCID: PMC2861596 DOI: 10.1371/journal.pone.0010394

Abstract

BACKGROUND: Titania dioxide (TiO(2)) photocatalyst is primarily induced by ultraviolet light irradiation. Visible-light responsive anion-doped TiO(2) photocatalysts contain higher quantum efficiency under sunlight and can be used safely in indoor settings without exposing to biohazardous ultraviolet light. The antibacterial efficiency, however, remains to be further improved.

METHODOLOGY/PRINCIPAL FINDINGS: Using thermal reduction method, here we synthesized silver-nanostructures coated TiO(2) thin films that contain a high visible-light responsive antibacterial property. Among our tested titania substrates including TiO(2), carbon-doped TiO(2) [TiO(2) (C)] and nitrogen-doped TiO(2) [TiO(2) (N)], TiO(2) (N) showed the best performance after silver coating. The synergistic antibacterial effect results approximately 5 log reductions of surviving bacteria of Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus and Acinetobacter baumannii. Scanning electron microscope analysis indicated that crystalline silver formed unique wire-like nanostructures on TiO(2) (N) substrates, while formed relatively straight and thicker rod-shaped precipitates on the other two titania materials.

CONCLUSION/SIGNIFICANCE: Our results suggested that proper forms of silver on various titania materials could further influence the bactericidal property.

References

  1. Langmuir. 2007 Apr 24;23(9):4982-7 - PubMed
  2. Nanotechnology. 2005 Oct;16(10):2346-53 - PubMed
  3. Biotechnol Adv. 2009 Jan-Feb;27(1):76-83 - PubMed
  4. J Biomed Sci. 2005;12(2):321-33 - PubMed
  5. J Biomed Mater Res B Appl Biomater. 2007 Feb;80(2):353-9 - PubMed
  6. Environ Sci Technol. 2005 Feb 15;39(4):1175-9 - PubMed
  7. Toxicology. 2007 Jan 25;230(1):90-104 - PubMed
  8. J Biomed Mater Res B Appl Biomater. 2008 May;85(2):453-60 - PubMed
  9. J Colloid Interface Sci. 2004 Jul 1;275(1):177-82 - PubMed
  10. Photochem Photobiol Sci. 2007 Jun;6(6):642-8 - PubMed
  11. Acta Biomater. 2006 Jul;2(4):421-32 - PubMed
  12. Burns. 2004 Jul;30 Suppl 1:S1-9 - PubMed
  13. Appl Environ Microbiol. 2007 Mar;73(6):1712-20 - PubMed
  14. Acta Biomater. 2008 Mar;4(2):273-83 - PubMed
  15. J Biomed Sci. 2009 Jan 15;16:7 - PubMed
  16. Environ Sci Technol. 2007 Jul 15;41(14):5050-6 - PubMed
  17. Nature. 1972 Jul 7;238(5358):37-8 - PubMed
  18. Microbiol Immunol. 2004;48(7):489-95 - PubMed
  19. J Toxicol Environ Health. 1990;29(4):417-29 - PubMed
  20. J Nanobiotechnology. 2005 Jun 29;3:6 - PubMed
  21. J Phys Chem B. 2006 Mar 9;110(9):4066-72 - PubMed
  22. Acta Biomater. 2005 Nov;1(6):691-703 - PubMed
  23. J Biomed Sci. 2005 Dec;12(6):881-98 - PubMed
  24. Appl Environ Microbiol. 1999 Sep;65(9):4094-8 - PubMed
  25. Science. 2001 Jul 13;293(5528):269-71 - PubMed
  26. Nanomedicine. 2007 Jun;3(2):168-71 - PubMed
  27. Appl Environ Microbiol. 2004 May;70(5):2848-53 - PubMed
  28. PLoS One. 2009;4(1):e4167 - PubMed
  29. FEMS Microbiol Rev. 2003 Jun;27(2-3):341-53 - PubMed
  30. J Ind Microbiol Biotechnol. 2006 Jul;33(7):627-34 - PubMed
  31. Appl Environ Microbiol. 2006 Sep;72(9):6111-6 - PubMed
  32. J Biomed Sci. 2007 May;14(3):419-27 - PubMed
  33. Chemphyschem. 2002 May 17;3(5):399-400 - PubMed

Substances

MeSH terms

Publication Types