Display options
Share it on

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1699-709. doi: 10.1152/ajpheart.01131.2009. Epub 2010 Apr 02.

A biophysical model for cardiac microimpedance measurements.

American journal of physiology. Heart and circulatory physiology

Andrew E Pollard, Roger C Barr

Affiliations

  1. Cardiac Rhythm Management Laboratory, Univ. of Alabama at Birmingham, Volker Hall B140, 1670 Univ. Blvd., Birmingham, AL 35294. [email protected]

PMID: 20363889 PMCID: PMC2886637 DOI: 10.1152/ajpheart.01131.2009

Abstract

Alterations to cell-to-cell electrical conductance and to the structural arrangement of the collagen network in cardiac tissue are recognized contributors to arrhythmia development, yet no present method allows direct in vivo measurements of these conductances at their true microscopic scale. The present report documents such a plan, which involves interstitial multisite stimulation at a subcellular to cellular size scale, and verifies the performance of the method through biophysical modeling. Although elements of the plan have been analyzed previously, their performance as a whole is considered here in a comprehensive way. Our analyses take advantage of a three-dimensional structural framework in which interstitial, intracellular, and membrane components are coupled to one another on the fine size scale, and electrodes are separated from one another as in arrays we fabricate routinely. With this arrangement, determination of passive tissue resistances can be made from measurements taken on top of the currents flowing in active tissue. In particular, our results show that measurements taken at multiple frequencies and electrode separations provide powerful predictions of the underlying tissue resistances in all geometric dimensions. Because of the small electrode size, separation of interstitial from intracellular compartment contributions is readily achieved.

References

  1. Circulation. 1998 May 5;97(17):1746-54 - PubMed
  2. Biophys J. 2009 Apr 22;96(8):3092-101 - PubMed
  3. J Physiol. 1987 Apr;385:307-24 - PubMed
  4. J Physiol. 1988 Nov;405:123-45 - PubMed
  5. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:423-9 - PubMed
  6. Ann Biomed Eng. 2001 Oct;29(10):862-77 - PubMed
  7. Circ Res. 2007 Nov 9;101(10):e103-12 - PubMed
  8. IEEE Trans Biomed Eng. 2008 Apr;55(4):1408-14 - PubMed
  9. Circ Res. 1979 May;44(5):701-12 - PubMed
  10. Circulation. 1991 Sep;84(3):1447-50 - PubMed
  11. Circ Res. 1990 Jun;66(6):1461-73 - PubMed
  12. J Physiol. 1978 Oct;283:263-82 - PubMed
  13. Am J Physiol Cell Physiol. 2001 Dec;281(6):C2049-60 - PubMed
  14. Physiol Rev. 2004 Apr;84(2):431-88 - PubMed
  15. Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1976-87 - PubMed
  16. Comput Biomed Res. 1983 Dec;16(6):522-30 - PubMed
  17. J Physiol. 1985 Sep;366:177-95 - PubMed
  18. Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1243-H1252 - PubMed
  19. Am J Physiol Heart Circ Physiol. 2004 Dec;287(6):H2402-11 - PubMed
  20. IEEE Trans Biomed Eng. 1982 Jul;29(7):541-6 - PubMed
  21. Circ Res. 2000 Apr 14;86(7):723-8 - PubMed
  22. Cardiovasc Res. 2006 Nov 1;72(2):241-9 - PubMed
  23. Circ Res. 1997 Nov;81(5):727-41 - PubMed
  24. Cardiovasc Res. 2004 May 1;62(2):309-22 - PubMed
  25. Circ Res. 1988 Apr;62(4):811-32 - PubMed
  26. J Physiol. 1976 Feb;255(2):335-46 - PubMed
  27. Circ Res. 1997 Jun;80(6):765-71 - PubMed
  28. Circulation. 1995 Aug 1;92(3):587-94 - PubMed

MeSH terms

Publication Types

Grant support