Display options
Share it on

Exp Clin Cardiol. 2002;7(1):25-9.

Glyburide prevents isoflurane's reducing effects on hydroxyl radical formation in the postischemic reperfused rat heart.

Experimental and clinical cardiology

Toshiaki Yamaguchi, Satoshi Kashimoto, Takeshi Oguchi, Teruo Kumazawa

Affiliations

  1. Department of Anesthesiology, Yamanashi Medical University, Yamanashi, Japan.

PMID: 19644575 PMCID: PMC2716186

Abstract

BACKGROUND: The role of K(ATP) channels in isoflurane's reducing effects on oxygen free radical formation are not well known.

OBJECTIVES: To investigate whether glyburide, an ATP-regulated potassium (K(ATP)) channel blocker, abolishes isoflurane-induced cardioprotective effects and whether it affects hydroxyl radical formation in the postischemic reperfused heart.

ANIMALS AND METHODS: Thirty-nine male Wistar rats were divided into four groups: group C (control, n=10), group I (isoflurane, n=9), group G (glyburide, n=10) and group GI (glyburide and isoflurane, n=10). The hearts were perfused as a Neely's working heart model. Afterwards, global heart ischemia was induced for 15 min followed by reperfusion for 20 min. The formation of hydroxyl radicals in the coronary effluent and heart was measured with high performance liquid chromatography.

RESULTS: Isoflurane alone and glyburide alone produced significant decreases in the duration of ventricular fibrillation during reperfusion (group C 452+/-345, group I 247+/-60, group G 261+/-135 s; P<0.05). In the presence of glyburide, isoflurane did not further decrease the duration of arrhythmia (group GI 230+/-48 s). Isoflurane reduced hydroxyl radical formation significantly in the coronary effluent during ischemia and reperfusion, but this was prevented by glyburide.

CONCLUSION: The results suggest that isoflurane reduces hydroxyl radical formation, at least in part, through activation of K(ATP) channels.

Keywords: Glyburide; Hydroxyl radical; Isoflurane; KATP channels

References

  1. Anesthesiology. 1998 Feb;88(2):495-513 - PubMed
  2. Anesthesiology. 1997 Feb;86(2):440-7 - PubMed
  3. Circ Res. 2000 Sep 15;87(6):460-6 - PubMed
  4. Am J Physiol. 1967 Apr;212(4):804-14 - PubMed
  5. Can J Anaesth. 1999 May;46(5 Pt 1):470-5 - PubMed
  6. Anesthesiology. 1988 Oct;69(4):552-65 - PubMed
  7. J Pharmacol Exp Ther. 1989 Oct;251(1):98-104 - PubMed
  8. Cardiovasc Res. 1995 Jul;30(1):1-17 - PubMed
  9. Acta Anaesthesiol Scand. 1988 Apr;32(3):199-202 - PubMed
  10. J Mol Cell Cardiol. 1997 Jan;29(1):207-16 - PubMed
  11. J Biochem Biophys Methods. 1984 Dec;10(3-4):221-35 - PubMed
  12. J Mol Cell Cardiol. 1989 Aug;21(8):783-8 - PubMed
  13. Pflugers Arch. 1998 Dec;437(1):155-7 - PubMed
  14. Arch Biochem Biophys. 2000 Jun 15;378(2):195-200 - PubMed
  15. Anesth Analg. 1989 Nov;69(5):575-86 - PubMed
  16. J Mol Cell Cardiol. 1998 May;30(5):999-1008 - PubMed
  17. Circ Res. 1997 May;80(5):743-8 - PubMed
  18. J Free Radic Biol Med. 1986;2(1):13-8 - PubMed
  19. J Cardiovasc Pharmacol. 1991 Dec;18(6):863-70 - PubMed
  20. Circulation. 1992 Jul;86(1):311-9 - PubMed
  21. J Mol Cell Cardiol. 1998 Jan;30(1):33-41 - PubMed
  22. Circ Res. 1992 Feb;70(2):223-33 - PubMed
  23. Br J Anaesth. 1995 May;74(5):569-75 - PubMed

Publication Types