Display options
Share it on

Sports Med. 2007;37(12):1071-88. doi: 10.2165/00007256-200737120-00005.

Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

Sports medicine (Auckland, N.Z.)

Joanna L Bowtell, Simon Marwood, Mark Bruce, Dumitru Constantin-Teodosiu, Paul L Greenhaff

Affiliations

  1. Academy of Sport, Physical Activity and Wellbeing, London South Bank University, London, UK. [email protected]

PMID: 18027994 DOI: 10.2165/00007256-200737120-00005

Abstract

The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool expansion at the start of exercise (same absolute work intensity) in parallel with either equivalent or increased oxidative energy provision. Cycloserine inhibits alanine aminotransferase, which catalyses the predominant anaplerotic reaction in exercising human muscle. When infused into contracting rat hindlimb muscle, TCAi pool expansion was reduced by 25% with no significant change in oxidative energy provision or power output. Glutamine supplementation has been shown to enhance TCAi pool expansion at the start of exercise with no increase in oxidative energy provision. In summary, there is a consistent dissociation between the extent of TCAi pool expansion at the onset of exercise and oxidative energy provision. At the other end of the spectrum, the parallel loss of TCAi, glycogen and adenine nucleotides and accumulation of inosine monophosphate during prolonged exercise has led to the suggestion that there is a link between muscle glycogen depletion, reduced TCA cycle flux and the development of fatigue. However, analysis of serial biopsies during prolonged exercise demonstrated dissociation between muscle TCAi content and both muscle glycogen content and muscle oxygen uptake. In addition, the delay in fatigue development achieved through increased carbohydrate availability does not attenuate TCAi reduction during prolonged exercise. Therefore, TCAi concentration in whole muscle homogenate does not seem to be of functional importance. However, TCAi content can currently only be measured in whole muscle homogenate rather than the mitochondrial subfraction where TCA cycle reactions occur. In addition, anaplerotic flux rather than TCAi content per se is likely to be of greater importance in determining TCA cycle flux, since TCAi content is probably merely reflective of anaplerotic substrate concentration. Methodological advances are required to allow researchers to address the questions of whether oxidative phosphorylation is limited by mitochondrial TCAi content and/or anaplerotic flux.

References

  1. FEBS Lett. 1980 Aug 25;117 Suppl:K73-85 - PubMed
  2. Am J Physiol. 1998 Jul;275(1):E132-9 - PubMed
  3. Am J Physiol Regul Integr Comp Physiol. 2001 Feb;280(2):R441-7 - PubMed
  4. Am J Physiol. 1986 Nov;251(5 Pt 1):C795-802 - PubMed
  5. Am J Physiol. 1999 Mar;276(3):E472-8 - PubMed
  6. Am J Physiol. 1990 Aug;259(2 Pt 1):E204-9 - PubMed
  7. J Physiol. 2002 Oct 15;544(2):591-602 - PubMed
  8. Biochem J. 1991 Mar 15;274 ( Pt 3):769-74 - PubMed
  9. Am J Physiol. 1999 Jul;277(1):E18-25 - PubMed
  10. J Physiol. 2003 Apr 15;548(Pt 2):541-8 - PubMed
  11. Med Sci Sports Exerc. 1994 Jan;26(1):37-43 - PubMed
  12. Am J Physiol. 1992 Apr;262(4 Pt 1):C975-9 - PubMed
  13. J Appl Physiol (1985). 1992 Nov;73(5):2004-10 - PubMed
  14. J Appl Physiol (1985). 1996 Jun;80(6):2250-4 - PubMed
  15. Eur J Biochem. 1980 Sep;110(1):255-62 - PubMed
  16. J Biol Chem. 1952 Mar;195(1):215-24 - PubMed
  17. J Biol Chem. 1979 Jan 25;254(2):420-30 - PubMed
  18. J Appl Physiol (1985). 1998 Nov;85(5):1744-52 - PubMed
  19. Histochemistry. 1985;82(2):175-83 - PubMed
  20. J Physiol. 1996 Aug 1;494 ( Pt 3):899-905 - PubMed
  21. Eur J Appl Physiol. 2007 Jan;99(2):149-61 - PubMed
  22. Biochem Soc Trans. 1983 Jan;11(1):52-6 - PubMed
  23. J Appl Physiol (1985). 1999 Feb;86(2):450-4 - PubMed
  24. J Appl Physiol (1985). 2004 Oct;97(4):1261-7 - PubMed
  25. Mol Neurobiol. 2000 Aug-Dec;22(1-3):21-40 - PubMed
  26. Am J Physiol. 1991 Jul;261(1 Pt 1):C71-6 - PubMed
  27. Am J Physiol. 1973 Jan;224(1):50-4 - PubMed
  28. J Appl Physiol (1985). 2003 Sep;95(3):999-1004 - PubMed
  29. Exp Physiol. 2001 Sep;86(5):659-65 - PubMed
  30. Adv Exp Med Biol. 1998;441:271-86 - PubMed
  31. J Biol Chem. 1986 Dec 15;261(35):16579-83 - PubMed
  32. Exerc Sport Sci Rev. 2002 Jul;30(3):129-37 - PubMed
  33. J Appl Physiol (1985). 1999 Nov;87(5):1662-7 - PubMed
  34. Acta Physiol Scand. 2000 Apr;168(4):657-65 - PubMed
  35. J Physiol. 2002 May 1;540(Pt 3):1079-86 - PubMed
  36. J Physiol. 1997 Jun 1;501 ( Pt 2):455-60 - PubMed
  37. Biochem Soc Trans. 1983 Jan;11(1):40-3 - PubMed
  38. Am J Physiol Endocrinol Metab. 2005 Jan;288(1):E1-15 - PubMed
  39. Am J Physiol. 1998 Feb;274(2):E377-80 - PubMed
  40. Biochem Biophys Res Commun. 1966 Mar 8;22(5):597-602 - PubMed
  41. Am J Physiol. 1997 Aug;273(2 Pt 1):E348-54 - PubMed
  42. Biochim Biophys Acta. 1993 May 7;1157(1):55-62 - PubMed
  43. Am J Physiol. 1993 Jun;264(6 Pt 1):E993-1000 - PubMed
  44. Comp Biochem Physiol A Mol Integr Physiol. 2001 Apr;128(4):889-96 - PubMed
  45. J Physiol. 2004 Dec 1;561(Pt 2):647-55 - PubMed
  46. Am J Physiol. 1990 Mar;258(3 Pt 1):C377-89 - PubMed
  47. J Appl Physiol (1985). 2003 Jun;94(6):2181-7 - PubMed
  48. Med Sci Sports Exerc. 1998 Jan;30(1):34-46 - PubMed
  49. J Clin Chem Clin Biochem. 1986 Jan;24(1):35-47 - PubMed
  50. Int J Sports Med. 1990 May;11 Suppl 2:S101-13 - PubMed
  51. J Physiol. 1997 Aug 1;502 ( Pt 3):703-13 - PubMed
  52. J Clin Chem Clin Biochem. 1986 Jan;24(1):11-8 - PubMed
  53. Am J Physiol. 1997 Feb;272(2 Pt 1):E239-44 - PubMed
  54. Physiol Rev. 2005 Jul;85(3):1093-129 - PubMed
  55. Arch Biochem Biophys. 1979 Jul;195(2):485-93 - PubMed
  56. Biochemistry. 1987 Nov 17;26(23):7501-10 - PubMed
  57. Am J Physiol. 1990 Nov;259(5 Pt 1):C834-41 - PubMed
  58. Am J Physiol. 1998 Aug;275(2):E235-42 - PubMed
  59. Biochim Biophys Acta. 1987 Oct 7;893(3):398-408 - PubMed
  60. Am J Physiol Endocrinol Metab. 2000 Oct;279(4):E752-61 - PubMed
  61. Acta Physiol Scand. 1987 Apr;129(4):505-15 - PubMed
  62. Biochem J. 1990 Jun 1;268(2):421-8 - PubMed
  63. J Physiol. 2006 Dec 15;577(Pt 3):769-77 - PubMed
  64. J Appl Physiol (1985). 2004 Aug;97(2):579-84 - PubMed
  65. J Appl Physiol (1985). 2006 Jun;100(6):1822-30 - PubMed
  66. J Clin Invest. 1996 Feb 1;97(3):879-83 - PubMed
  67. J Physiol. 2005 Jun 1;565(Pt 2):637-43 - PubMed
  68. J Physiol. 2001 Jul 1;534(Pt 1):269-78 - PubMed
  69. Pflugers Arch. 2006 Sep;452(6):737-43 - PubMed
  70. J Physiol. 2002 Dec 1;545(2):705-13 - PubMed
  71. Am J Physiol Endocrinol Metab. 2000 Jan;278(1):E83-9 - PubMed
  72. Biochem Med Metab Biol. 1994 Jun;52(1):65-75 - PubMed
  73. Am J Physiol. 1999 Jul;277(1):E33-8 - PubMed
  74. J Biol Chem. 1982 Mar 10;257(5):2397-402 - PubMed
  75. J Physiol. 2004 Dec 15;561(Pt 3):851-9 - PubMed
  76. Acta Physiol Scand. 2000 Apr;168(4):635-41 - PubMed
  77. J Physiol. 2001 Dec 15;537(Pt 3):971-8 - PubMed
  78. Am J Physiol. 1997 Aug;273(2 Pt 1):E233-8 - PubMed
  79. Eur J Biochem. 1980 Sep;110(2):371-7 - PubMed
  80. Annu Rev Physiol. 1974;36:413-59 - PubMed
  81. Circ Res. 1976 May;38(5 Suppl 1):I31-8 - PubMed
  82. J Biol Chem. 1972 Feb 10;247(3):667-79 - PubMed
  83. Am J Physiol Endocrinol Metab. 2001 Apr;280(4):E669-75 - PubMed

MeSH terms

Publication Types