Display options
Share it on

Philos Trans R Soc Lond B Biol Sci. 2008 Feb 27;363(1492):789-813. doi: 10.1098/rstb.2007.2184.

Greenhouse gas mitigation in agriculture.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences

Pete Smith, Daniel Martino, Zucong Cai, Daniel Gwary, Henry Janzen, Pushpam Kumar, Bruce McCarl, Stephen Ogle, Frank O'Mara, Charles Rice, Bob Scholes, Oleg Sirotenko, Mark Howden, Tim McAllister, Genxing Pan, Vladimir Romanenkov, Uwe Schneider, Sirintornthep Towprayoon, Martin Wattenbach, Jo Smith

Affiliations

  1. School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK. [email protected]

PMID: 17827109 PMCID: PMC2610110 DOI: 10.1098/rstb.2007.2184

Abstract

Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively.

References

  1. J Dairy Sci. 1995 Dec;78(12):2797-806 - PubMed
  2. J Anim Sci. 1995 Aug;73(8):2483-92 - PubMed
  3. Environ Sci Technol. 2005 Dec 15;39(24):9750-8 - PubMed
  4. Reprod Nutr Dev. 1993;33(4):297-323 - PubMed
  5. Nature. 2001 Feb 8;409(6821):671-2 - PubMed
  6. Br J Nutr. 2005 Jul;94(1):27-35 - PubMed
  7. Science. 2001 Dec 21;294(5551):2481-2 - PubMed
  8. Br J Nutr. 1965;19(4):511-22 - PubMed
  9. J Anim Sci. 2003 Dec;81(12):3141-50 - PubMed
  10. Science. 2004 Jun 11;304(5677):1623-7 - PubMed
  11. Science. 2000 Sep 15;289(5486):1922-5 - PubMed
  12. J Anim Sci. 2004 Nov;82(11):3346-56 - PubMed
  13. Br J Nutr. 2003 Sep;90(3):529-40 - PubMed
  14. Environ Manage. 2004 Apr;33(4):485-95 - PubMed
  15. J Anim Sci. 2005 Mar;83(3):653-61 - PubMed
  16. J Anim Sci. 2006 Sep;84(9):2418-25 - PubMed
  17. Science. 2005 Jul 22;309(5734):570-4 - PubMed
  18. Science. 2003 May 16;300(5622):1103-4 - PubMed
  19. J Dairy Sci. 1992 Dec;75(12):3432-51 - PubMed
  20. Vaccine. 2004 Sep 28;22(29-30):3976-85 - PubMed
  21. J Bacteriol. 1964 May;87(5):993-8 - PubMed
  22. J Anim Sci. 2006 Jan;84(1):162-70 - PubMed
  23. J Dairy Sci. 2000 May;83(5):1145-50 - PubMed
  24. Science. 2005 Mar 4;307(5714):1454-6 - PubMed
  25. Ambio. 2002 Sep;31(6):471-7 - PubMed
  26. J Dairy Sci. 2005 Mar;88(3):1255-63 - PubMed
  27. J Anim Sci. 1986 Jun;62(6):1737-41 - PubMed
  28. Nature. 2005 Jun 30;435(7046):1187-90 - PubMed
  29. Br J Nutr. 1978 Jan;39(1):105-17 - PubMed
  30. Science. 2002 Sep 27;297(5590):2250-3 - PubMed
  31. Bioresour Technol. 2001 Oct;80(1):63-71 - PubMed
  32. Br J Nutr. 1976 Jul;36(1):1-14 - PubMed
  33. Science. 2004 Jul 16;305(5682):340; author reply 340 - PubMed

Substances

MeSH terms

Publication Types