Display options
Share it on

Radiat Med. 2007 Apr;25(3):94-105. doi: 10.1007/s11604-006-0109-z. Epub 2007 Apr 27.

Evaluation of tumor blood flow in musculoskeletal lesions: dynamic contrast-enhanced MR imaging and its possibility when monitoring the response to preoperative chemotherapy-work in progress.

Radiation medicine

Makoto Kajihara, Yoshifumi Sugawara, Kenshi Sakayama, Keiichi Kikuchi, Teruhito Mochizuki, Kenya Murase

Affiliations

  1. Department of Radiology, Ehime University School of Medicine, Toon 791-0295, Japan. [email protected]

PMID: 17450333 DOI: 10.1007/s11604-006-0109-z

Abstract

PURPOSE: The objective of this study was to calculate tumor blood flow (TBF) in musculoskeletal lesions and to evaluate the usefulness of this parameter in differentiating malignant from benign lesions and monitoring the treatment response to preoperative chemotherapy.

MATERIALS AND METHODS: Altogether, 33 patients with musculoskeletal lesions underwent a total of 50 dynamic magnetic resonance imaging (MRI) examinations, including 28 on 9 patients undergoing preoperative chemotherapy. TBF was calculated using deconvolution analysis. Steepest slope (SS) was determined from the time-intensity curve during the first pass of contrast medium.

RESULTS: TBF ranged from 2.7 to 178.6 mL/100 mL/min in benign lesions and from 15.4 to 296.3 mL/100 mL/min in malignant lesions. SS ranged from 0.5%/s to 31.8%/s for benign lesions and from 3.1%/s to 64.8%/sec for malignant lesions. TBF and SS did not differ significantly between benign and malignant lesions. Among the nine patients who underwent preoperative chemotherapy, TBF after chemotherapy was lower in good responders (11.7, 11.0, 7.9 mL/100 mL/min) (n = 3, tumor necrosis > or =90%) than in poor responders (23.4-141.5 mL/100 mL/min) (n = 6, tumor necrosis <90%).

CONCLUSION: TBF and SS cannot reliably differentiate malignant from benign lesions. However, they have potential utility in evaluating the preoperative treatment response in patients with malignant musculoskeletal tumors.

References

  1. Arch Pathol Lab Med. 1977 Jan;101(1):14-8 - PubMed
  2. Skeletal Radiol. 1998 Feb;27(2):57-71 - PubMed
  3. J Comput Assist Tomogr. 2006 Nov-Dec;30(6):983-90 - PubMed
  4. Radiology. 1989 Jun;171(3):767-73 - PubMed
  5. Radiology. 1990 Feb;174(2):517-26 - PubMed
  6. Magn Reson Med. 1996 Nov;36(5):715-25 - PubMed
  7. Radiology. 1992 Nov;185(2):587-92 - PubMed
  8. Eur Radiol. 1999;9(5):907-14 - PubMed
  9. Eur Radiol. 2003 Aug;13(8):1849-58 - PubMed
  10. Radiology. 2003 Jul;228(1):271-8 - PubMed
  11. Magn Reson Imaging. 1994;12(5):687-702 - PubMed
  12. Br J Cancer. 2001 Nov 30;85(11):1655-63 - PubMed
  13. Radiology. 1998 Sep;208(3):821-8 - PubMed
  14. Radiology. 1994 Sep;192(3):835-43 - PubMed
  15. J Magn Reson Imaging. 2001 May;13(5):797-806 - PubMed
  16. AJR Am J Roentgenol. 1991 Aug;157(2):347-51 - PubMed
  17. AJR Am J Roentgenol. 1995 Sep;165(3):593-8 - PubMed
  18. Radiology. 1990 Jun;175(3):791-6 - PubMed
  19. Cancer. 1982 Mar 15;49(6):1221-30 - PubMed
  20. Radiology. 1996 Sep;200(3):639-49 - PubMed
  21. J Appl Physiol. 1954 Jun;6(12):731-44 - PubMed
  22. Radiology. 2006 May;239(2):351-60 - PubMed
  23. Magn Reson Imaging. 1997;15(5):613-7 - PubMed
  24. Radiology. 1992 Jul;184(1):243-8 - PubMed
  25. Semin Diagn Pathol. 1987 Aug;4(3):212-36 - PubMed
  26. Skeletal Radiol. 1997 Jan;26(1):2-15 - PubMed
  27. Radiology. 1992 Nov;185(2):581-6 - PubMed
  28. Magn Reson Med. 1996 Aug;36(2):225-31 - PubMed
  29. Radiology. 2004 Nov;233(2):493-502 - PubMed
  30. AJR Am J Roentgenol. 2000 Sep;175(3):575-87 - PubMed
  31. Cancer. 1985 Oct 1;56(7):1515-21 - PubMed

Substances

MeSH terms

Publication Types