Display options
Share it on

Eur Radiol. 2006 Dec;16(12):2637-43. doi: 10.1007/s00330-006-0342-y. Epub 2006 Aug 15.

Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: Initial results.

European radiology

Yoshiko Hayashida, Toshitake Yakushiji, Kazuo Awai, Kazuhiro Katahira, Yoshiharu Nakayama, Osamu Shimomura, Mika Kitajima, Toshinori Hirai, Yasuyuki Yamashita, Hiroshi Mizuta

Affiliations

  1. Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-0811, Japan. [email protected]

PMID: 16909220 DOI: 10.1007/s00330-006-0342-y

Abstract

The purpose of our study was to investigate whether quantitative diffusion-weighted images (DWI) were useful for monitoring the therapeutic response of primary bone tumors. We encountered 18 osteogenic and Ewing sarcomas. Magnetic resonance (MR) images were performed in all patients before and after therapy. We measured the apparent diffusion coefficient (ADC) values, contrast-to-noise ratio (CNR), and tumor volume of the bone tumors pre- and posttreatment. We determined change in ADC value, change in CNR on T2-weighted images (T2WI), change in CNR on gadopentetate dimeglumine (Gd)-T1-weighted images (Gd-T1WI), and change in tumor volume. The bone tumors were divided into two groups: group A was comprised of tumors with less than 90% necrosis after treatment and group B of tumors at least with 90%. Changes in ADC value, tumor volume, and CNR were compared between the groups. Change in the ADC value was statistically greater in group B than that in the group A (p = 0.003). There was no significant difference in the changes in CNR on T2WI (p = 0.683), in CNR on Gd-T1WI (p = 0.763), and tumor volume (p = 0.065). The ADC value on DWI is a promising tool for monitoring the therapeutic response of primary bone sarcomas.

References

  1. Arch Pathol Lab Med. 1977 Jan;101(1):14-8 - PubMed
  2. Eur Radiol. 2001;11(5):828-33 - PubMed
  3. Radiology. 1992 Mar;182(3):839-44 - PubMed
  4. Radiology. 2000 Dec;217(3):886-94 - PubMed
  5. Radiology. 2005 Nov;237(2):492-9 - PubMed
  6. Radiology. 1989 Jun;171(3):767-73 - PubMed
  7. Radiology. 1992 Nov;185(2):587-92 - PubMed
  8. Radiology. 2003 Jul;228(1):271-8 - PubMed
  9. Radiology. 1998 Jan;206(1):227-35 - PubMed
  10. Cancer. 1997 Oct 15;80(8):1507-12 - PubMed
  11. Skeletal Radiol. 1986;15(2):96-102 - PubMed
  12. Cancer. 1999 Sep 15;86(6):949-56 - PubMed
  13. AJR Am J Roentgenol. 1995 Sep;165(3):593-8 - PubMed
  14. AJR Am J Roentgenol. 1985 Jan;144(1):89-93 - PubMed
  15. Skeletal Radiol. 2000 Oct;29(10):555-62 - PubMed
  16. Eur Radiol. 2004 Jun;14(6):959-63 - PubMed
  17. J Clin Oncol. 1998 Jul;16(7):2452-8 - PubMed
  18. Radiology. 1990 Jun;175(3):791-6 - PubMed
  19. Radiology. 1992 Jul;184(1):243-8 - PubMed
  20. J Nucl Med. 1996 Sep;37(9):1444-8 - PubMed
  21. Invest Radiol. 1992 May;27(5):367-73 - PubMed
  22. Radiology. 1993 Mar;186(3):904-5 - PubMed
  23. Invest Radiol. 1992 Oct;27(10):847-55 - PubMed
  24. Radiology. 1994 May;191(2):421-31 - PubMed
  25. Radiology. 1989 Mar;170(3 Pt 1):839-42 - PubMed
  26. Skeletal Radiol. 1996 Jan;25(1):19-24 - PubMed
  27. J Magn Reson Imaging. 2002 Mar;15(3):302-7 - PubMed
  28. Radiology. 1982 May;143(2):355-60 - PubMed

Substances

MeSH terms

Publication Types