Display options
Share it on

Am J Physiol Heart Circ Physiol. 2007 Jan;292(1):H66-75. doi: 10.1152/ajpheart.00312.2006. Epub 2006 Sep 22.

Pharmacogenetics and anti-arrhythmic drug therapy: a theoretical investigation.

American journal of physiology. Heart and circulatory physiology

Colleen E Clancy, Zheng I Zhu, Yoram Rudy

Affiliations

  1. Dept. of Physiology and Biophysics, Insitute for Computational Biomedicine, Weill Medical College of Cornell Univeristy, 1300 York Ave., LC-501E, New York, NY 10021, USA. [email protected]

PMID: 16997895 PMCID: PMC2034498 DOI: 10.1152/ajpheart.00312.2006

Abstract

Pharmacological management of cardiac arrhythmias has been a long and widely sought goal. One of the difficulties in treating arrhythmia stems, in part, from incomplete understanding of the mechanisms of drug block and how intrinsic properties of channel gating affect drug access, binding affinity, and unblock. In the last decade, a plethora of genetic information has revealed that genetics may play a critical role in determining arrhythmia susceptibility and in efficacy of pharmacological therapy. In this context, we present a theoretical approach for investigating effects of drug-channel interaction. We use as an example open-channel or inactivated-channel block by the local anesthetics mexiletine and lidocaine, respectively, of normal and DeltaKPQ mutant Na(+) channels associated with the long-QT syndrome type 3. Results show how kinetic properties of channel gating, which are affected by mutations, are important determinants of drug efficacy. Investigations of Na(+) channel blockade are conducted at multiple scales (single channel and macroscopic current) and, importantly, during the cardiac action potential (AP). Our findings suggest that channel mean open time is a primary determinant of open state blocker efficacy. Channels that remain in the open state longer, such as the DeltaKPQ mutant channels in the abnormal burst mode, are blocked preferentially by low mexiletine concentrations. AP simulations confirm that a low dose of mexiletine can remove early afterdepolarizations and restore normal repolarization without affecting the AP upstroke. The simulations also suggest that inactivation state block by lidocaine is less effective in restoring normal repolarization and adversely suppresses peak Na(+) current.

References

  1. J Physiol. 2005 Apr 1;564(Pt 1):21-31 - PubMed
  2. Heart Rhythm. 2004 Nov;1(5):600-7 - PubMed
  3. Heart Rhythm. 2005 Feb;2(2):134-40 - PubMed
  4. Curr Pharm Des. 2005;11(12):1561-72 - PubMed
  5. J Mol Cell Cardiol. 2005 Jun;38(6):965-8 - PubMed
  6. J Clin Invest. 2000 Apr;105(8):1133-40 - PubMed
  7. Biophys J. 2000 May;78(5):2392-404 - PubMed
  8. Circ Res. 2000 May 12;86(9):E91-7 - PubMed
  9. Circulation. 2000 Aug 22;102(8):921-5 - PubMed
  10. Circulation. 2000 Aug 29;102(9):945-7 - PubMed
  11. Circulation. 2000 Sep 5;102(10):1178-85 - PubMed
  12. J Cardiovasc Electrophysiol. 2000 Oct;11(10):1174-8 - PubMed
  13. Biophys J. 2000 Dec;79(6):3019-35 - PubMed
  14. Nature. 2001 Feb 22;409(6823):1043-7 - PubMed
  15. Cardiovasc Res. 2001 May;50(2):301-13 - PubMed
  16. Circulation. 2001 Sep 4;104(10):1200-5 - PubMed
  17. Circulation. 2002 Mar 12;105(10):1208-13 - PubMed
  18. J Gen Physiol. 2002 Jul;120(1):39-51 - PubMed
  19. Science. 2002 Aug 23;297(5585):1333-6 - PubMed
  20. Physiol Genomics. 2002 Sep 3;10(3):191-7 - PubMed
  21. J Clin Invest. 2002 Oct;110(8):1201-9 - PubMed
  22. J Clin Invest. 2002 Nov;110(9):1251-62 - PubMed
  23. J Gen Physiol. 2003 Mar;121(3):199-214 - PubMed
  24. Pacing Clin Electrophysiol. 2003 Jan;26(1 Pt 2):338-41 - PubMed
  25. Circulation. 2003 May 6;107(17):2233-7 - PubMed
  26. J Gen Physiol. 2003 Sep;122(3):365-74 - PubMed
  27. Circ Res. 2003 Sep 19;93(6):491-9 - PubMed
  28. J Clin Invest. 2003 Oct;112(7):1019-28 - PubMed
  29. Trends Cardiovasc Med. 2004 Jan;14(1):28-35 - PubMed
  30. J Physiol. 2004 Oct 1;560(Pt 1):37-49 - PubMed
  31. Am Heart J. 1975 Apr;89(4):526-36 - PubMed
  32. J Gen Physiol. 1977 Apr;69(4):497-515 - PubMed
  33. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6930-4 - PubMed
  34. Nature. 1981 Jun 4;291(5814):426-7 - PubMed
  35. Am Heart J. 1983 Oct;106(4 Pt 2):798-811 - PubMed
  36. Am Heart J. 1983 Oct;106(4 Pt 2):829-39 - PubMed
  37. J Gen Physiol. 1984 Oct;84(4):505-34 - PubMed
  38. J Gen Physiol. 1984 Oct;84(4):535-64 - PubMed
  39. Am J Cardiol. 1987 Apr 30;59(11):10E-18E - PubMed
  40. J Physiol. 1989 Feb;409:241-62 - PubMed
  41. N Engl J Med. 1991 Mar 21;324(12):781-8 - PubMed
  42. Circulation. 1991 Oct;84(4):1831-51 - PubMed
  43. J Clin Pharmacol. 1992 Nov;32(11):964-77 - PubMed
  44. Fundam Clin Pharmacol. 1993;7(1):29-38 - PubMed
  45. Pflugers Arch. 1993 Jun;424(1):15-24 - PubMed
  46. Biophys J. 1993 Jul;65(1):386-95 - PubMed
  47. Circ Res. 1994 Jun;74(6):1071-96 - PubMed
  48. Circ Res. 1994 Jun;74(6):1097-113 - PubMed
  49. Circ Res. 1995 Sep;77(3):584-92 - PubMed
  50. Nature. 1995 Aug 24;376(6542):683-5 - PubMed
  51. Circulation. 1995 Nov 15;92(10):3014-24 - PubMed
  52. Circulation. 1995 Dec 15;92(12):3381-6 - PubMed
  53. Biophys J. 1996 Apr;70(4):1700-8 - PubMed
  54. Circ Res. 1996 Jul;79(1):103-8 - PubMed
  55. Lancet. 1996 Jul 6;348(9019):7-12 - PubMed
  56. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9270-5 - PubMed
  57. J Clin Invest. 1997 Apr 1;99(7):1714-20 - PubMed
  58. Nature. 1998 Mar 19;392(6673):293-6 - PubMed
  59. Am J Physiol. 1998 May;274(5 Pt 2):H1643-54 - PubMed
  60. Science. 1998 Jul 3;281(5373):32-4 - PubMed
  61. Prog Biophys Mol Biol. 1998;70(1):1-72 - PubMed
  62. Circulation. 1999 Jun 22;99(24):3165-71 - PubMed
  63. Nature. 1999 Aug 5;400(6744):566-9 - PubMed
  64. J Physiol. 1952 Aug;117(4):500-44 - PubMed
  65. Physiol Rev. 2005 Jan;85(1):33-47 - PubMed
  66. JAMA. 2005 Jan 26;293(4):491-3 - PubMed

Substances

MeSH terms

Publication Types

Grant support