Display options
Share it on

J Virol. 2006 Aug;80(15):7295-307. doi: 10.1128/JVI.00679-06.

Independent contributions of polyomavirus middle T and small T to the regulation of early and late gene expression and DNA replication.

Journal of virology

Li Chen, Xiaoyu Wang, Michele M Fluck

Affiliations

  1. Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824-1101, USA.

PMID: 16840310 PMCID: PMC1563708 DOI: 10.1128/JVI.00679-06

Abstract

We previously showed that murine polyomavirus mutants that lack both middle T (MT) and small T (ST) functions have a severe pleiotropic defect in early and late viral gene expression as well as genome amplification. The respective contribution of MT and ST to this phenotype was unclear. This work separates the roles of MT and ST in both permissive mouse cells and nonpermissive rat cells. It demonstrates for the first time a role for both proteins. To gain insight into the signaling pathways that might be required, we focused on MT and its mutants. The results show that each of the major MT signaling connections, Shc, phosphatidylinositol 3'-kinase, and phospholipase C gamma1, could contribute in an additive way. Unexpectedly, a mutant lacking all these connections because the three major tyrosines had been converted to phenylalanine retained some activity. A mutant in which all six MT C-terminal tyrosines had been mutated was inactive. This suggests a novel signaling pathway for MT that uses the minor tyrosines. What is common to ST and the individual MT signaling pathways is the ability to signal to the polyomavirus enhancer, in particular to the crucial AP-1 and PEA3/ets binding sites. This connection explains the pleiotropy of MT and ST effects on transcription and DNA replication.

References

  1. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3579-83 - PubMed
  2. J Virol. 1979 Sep;31(3):645-56 - PubMed
  3. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4754-8 - PubMed
  4. Proc Natl Acad Sci U S A. 1970 Sep;67(1):394-9 - PubMed
  5. Mol Cell Biol. 1987 May;7(5):1681-90 - PubMed
  6. Trends Microbiol. 1995 Jan;3(1):31-5 - PubMed
  7. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1210-4 - PubMed
  8. Trends Biochem Sci. 1998 Jun;23(6):213-6 - PubMed
  9. Nature. 1993 Jul 15;364(6434):249-52 - PubMed
  10. J Virol. 1986 Aug;59(2):384-91 - PubMed
  11. Oncogene. 1997 Mar 13;14(10):1235-41 - PubMed
  12. J Virol. 1989 May;63(5):2126-33 - PubMed
  13. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6344-8 - PubMed
  14. Int J Biochem Cell Biol. 1997 Dec;29(12):1371-87 - PubMed
  15. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3613-7 - PubMed
  16. Nature. 1990 Jul 12;346(6280):191-3 - PubMed
  17. Mol Cell Biol. 1998 Dec;18(12):7556-64 - PubMed
  18. J Virol. 1990 Mar;64(3):992-1001 - PubMed
  19. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5839-43 - PubMed
  20. Crit Rev Oncog. 1996;7(3-4):261-91 - PubMed
  21. EMBO J. 1983;2(12):2095-101 - PubMed
  22. Oncogene. 2001 Nov 26;20(54):7908-16 - PubMed
  23. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4972-6 - PubMed
  24. J Virol. 1998 Dec;72(12):9637-44 - PubMed
  25. J Virol. 1991 Oct;65(10):5391-400 - PubMed
  26. Virology. 1989 Feb;168(2):312-9 - PubMed
  27. J Virol. 1981 Jun;38(3):958-67 - PubMed
  28. Nucleic Acids Res. 1981 Dec 11;9(23):6231-50 - PubMed
  29. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14619-24 - PubMed
  30. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10064-8 - PubMed
  31. J Virol. 1985 Feb;53(2):579-86 - PubMed
  32. J Virol. 2001 Sep;75(18):8380-9 - PubMed
  33. Nature. 1985 May 16-22;315(6016):239-42 - PubMed
  34. Mol Cell Biol. 1994 Sep;14(9):6244-52 - PubMed
  35. EMBO J. 1984 Jan;3(1):73-9 - PubMed
  36. Mol Cell Biol. 1984 Jul;4(7):1334-42 - PubMed
  37. EMBO J. 1988 Aug;7(8):2475-83 - PubMed
  38. J Virol. 1990 Sep;64(9):4454-61 - PubMed
  39. Microbiol Mol Biol Rev. 2001 Jun;65(2):288-318 ; second and third pages, table of contents - PubMed
  40. Biochem Soc Symp. 1999;64:1-12 - PubMed
  41. Cell. 1993 Dec 3;75(5):887-97 - PubMed
  42. Philos Trans R Soc Lond B Biol Sci. 1996 Feb 29;351(1336):127-34 - PubMed
  43. Mol Cell Biol. 1985 Apr;5(4):649-58 - PubMed
  44. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1092-6 - PubMed
  45. Virology. 1962 Mar;16:282-300 - PubMed
  46. J Biol Chem. 1995 Dec 8;270(49):29286-92 - PubMed
  47. Biochim Biophys Acta. 1989 Feb;948(3):345-64 - PubMed
  48. Cold Spring Harb Symp Quant Biol. 1975;39 Pt 1:45-52 - PubMed
  49. EMBO J. 1989 Nov;8(11):3371-8 - PubMed
  50. J Virol. 1988 May;62(5):1667-78 - PubMed
  51. J Virol. 1977 Oct;24(1):142-50 - PubMed
  52. Mol Cell Biol. 1989 Feb;9(2):648-58 - PubMed
  53. Proc Natl Acad Sci U S A. 1960 Mar;46(3):365-70 - PubMed
  54. J Immunol. 1996 Sep 15;157(6):2618-23 - PubMed
  55. J Virol. 2001 Sep;75(18):8368-79 - PubMed
  56. Cell. 1979 Nov;18(3):793-802 - PubMed
  57. Cell. 1987 Sep 25;50(7):1031-7 - PubMed
  58. Nature. 1984 Nov 15-21;312(5991):242-6 - PubMed
  59. Nature. 1983 Aug 4-10;304(5925):456-9 - PubMed
  60. EMBO J. 2001 Nov 15;20(22):6327-36 - PubMed
  61. J Virol. 1986 Nov;60(2):768-70 - PubMed
  62. Proc Natl Acad Sci U S A. 1984 Feb;81(3):679-83 - PubMed
  63. Cancer Res. 1998 Jan 1;58(1):14-9 - PubMed
  64. Nature. 1983 Jun 2-8;303(5916):435-9 - PubMed
  65. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12861-6 - PubMed
  66. Oncogene. 1995 Dec 7;11(11):2383-91 - PubMed
  67. J Biol Chem. 1995 May 26;270(21):12331-4 - PubMed
  68. J Virol. 1990 May;64(5):2193-201 - PubMed
  69. Nature. 1994 Jan 6;367(6458):87-90 - PubMed
  70. Mol Cell Biol. 1988 Nov;8(11):5000-15 - PubMed
  71. J Virol. 1985 May;54(2):311-6 - PubMed
  72. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8494-8 - PubMed

Substances

MeSH terms

Publication Types

Grant support