Display options
Share it on

J Med Genet. 2004 Apr;41(4):241-8. doi: 10.1136/jmg.2003.017731.

Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features.

Journal of medical genetics

C Shaw-Smith, R Redon, L Rickman, M Rio, L Willatt, H Fiegler, H Firth, D Sanlaville, R Winter, L Colleaux, M Bobrow, N P Carter

Affiliations

  1. University of Cambridge Department of Medical Genetics, Addenbrooke's Hospital, Hills Road, Cambridge, UK.

PMID: 15060094 PMCID: PMC1735726 DOI: 10.1136/jmg.2003.017731

Abstract

The underlying causes of learning disability and dysmorphic features in many patients remain unidentified despite extensive investigation. Routine karyotype analysis is not sensitive enough to detect subtle chromosome rearrangements (less than 5 Mb). The presence of subtle DNA copy number changes was investigated by array-CGH in 50 patients with learning disability and dysmorphism, employing a DNA microarray constructed from large insert clones spaced at approximately 1 Mb intervals across the genome. Twelve copy number abnormalities were identified in 12 patients (24% of the total): seven deletions (six apparently de novo and one inherited from a phenotypically normal parent) and five duplications (one de novo and four inherited from phenotypically normal parents). Altered segments ranged in size from those involving a single clone to regions as large as 14 Mb. No recurrent deletion or duplication was identified within this cohort of patients. On the basis of these results, we anticipate that array-CGH will become a routine method of genome-wide screening for imbalanced rearrangements in children with learning disability.

References

  1. Am J Hum Genet. 2002 May;70(5):1269-76 - PubMed
  2. Hum Mol Genet. 2003 Oct 15;12 Spec No 2:R145-52 - PubMed
  3. Am J Med Genet. 2002 Nov 22;113(2):125-36 - PubMed
  4. Hum Mol Genet. 2002 Dec 1;11(25):3221-9 - PubMed
  5. Genes Chromosomes Cancer. 2003 Feb;36(2):159-66 - PubMed
  6. Eur J Pediatr. 2003 Feb;162(2):100-3 - PubMed
  7. Am J Pathol. 2003 Mar;162(3):763-70 - PubMed
  8. Am J Hum Genet. 2003 Dec;73(6):1261-70 - PubMed
  9. J Med Genet. 1979 Aug;16(4):323-7 - PubMed
  10. J Med Genet. 1987 Apr;24(4):229-31 - PubMed
  11. Am J Med Genet. 1989 Mar;32(3):376-9 - PubMed
  12. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5958-62 - PubMed
  13. J Med Genet. 1991 Feb;28(2):128-30 - PubMed
  14. Clin Genet. 1992 Jan;41(1):54-6 - PubMed
  15. Lancet. 1992 Sep 5;340(8819):573-5 - PubMed
  16. Clin Genet. 1993 Nov;44(5):258-61 - PubMed
  17. Nat Genet. 1995 Feb;9(2):132-40 - PubMed
  18. Hum Genet. 1998 Nov;103(5):600-7 - PubMed
  19. Am J Hum Genet. 2000 Sep;67(3):563-73 - PubMed
  20. Hum Mol Genet. 2001 Feb 1;10(3):271-82 - PubMed
  21. J Med Genet. 2001 Nov;38(11):740-4 - PubMed
  22. Nat Genet. 2001 Dec;29(4):459-64 - PubMed
  23. Genome Res. 2002 Feb;12(2):325-32 - PubMed
  24. Am J Med Genet. 2002 Feb 1;107(4):263-6 - PubMed
  25. Cancer Res. 2002 Feb 15;62(4):957-60 - PubMed
  26. Nat Biotechnol. 2002 Apr;20(4):393-6 - PubMed
  27. Genes Chromosomes Cancer. 2003 Apr;36(4):361-74 - PubMed
  28. Am J Hum Genet. 2003 May;72(5):1200-12 - PubMed
  29. Am J Hum Genet. 2003 Jun;72(6):1578-84 - PubMed
  30. J Med Genet. 2003 Jun;40(6):385-98 - PubMed
  31. Nature. 2003 Jun 19;423(6942):825-37 - PubMed
  32. Hum Mol Genet. 2003 Sep 1;12(17):2145-52 - PubMed
  33. J Med Genet. 2003 Sep;40(9):664-70 - PubMed
  34. Methods Mol Biol. 2002;204:181-9 - PubMed

MeSH terms

Publication Types