Display options
Share it on

Biophys J. 2004 May;86(5):3211-22. doi: 10.1016/S0006-3495(04)74369-6.

Substrate-dependent morphology of supramolecular assemblies: fibrillin and type-VI collagen microfibrils.

Biophysical journal

Michael J Sherratt, David F Holmes, C Adrian Shuttleworth, Cay M Kielty

Affiliations

  1. Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom. [email protected]

PMID: 15111434 PMCID: PMC1304186 DOI: 10.1016/S0006-3495(04)74369-6

Abstract

Substrate hydrophobicity/hydrophilicity has previously been shown to affect the morphology and biological function of isolated proteins. We have employed atomic force microscopy to investigate substrate dependent morphologies of two biochemically distinct native supramolecular assemblies: fibrillin and type-VI collagen microfibrils. These morphologically heterogeneous microfibrillar systems are found in many vertebrate tissues where they perform structural and cell-signaling roles. Fibrillin microfibrils adsorbed to a hydrophilic mica substrate adopted a diffuse morphology. Fibrillin microfibrils adsorbed to mica coated with poly-L-lysine or to borosilicate glass substrates had a more compact morphology and a directional asymmetry to the bead, which was not present on mica alone. Intermediate morphologies were observed along a substrate gradient. The classical double-beaded appearance of type-VI collagen microfibrils was evident on mica coated with poly-L-lysine and on glass. On hydrophilic mica, morphology was severely disrupted and there was a major conformational reorganization along the whole collagen microfibril repeat. These observations of substrate dependent conformation have important implications for the interpretation of data from in vitro protein interaction assays and cellular signaling studies. Furthermore, conformational changes may be induced by local charge environments in vivo, revealing or hiding binding sites.

References

  1. EMBO J. 1992 Dec;11(12):4281-90 - PubMed
  2. Annu Rev Biophys Biomol Struct. 2000;29:1-26 - PubMed
  3. J Struct Biol. 1997 Jul;119(2):172-88 - PubMed
  4. J Cell Sci. 1992 Oct;103 ( Pt 2):445-51 - PubMed
  5. J Mol Biol. 1982 May 5;157(1):105-32 - PubMed
  6. J Struct Biol. 1991 Aug;107(1):6-14 - PubMed
  7. Mol Biol Cell. 1999 Mar;10(3):785-98 - PubMed
  8. J Med Genet. 2000 Jan;37(1):9-25 - PubMed
  9. FEBS Lett. 1996 May 20;386(2-3):169-73 - PubMed
  10. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3688-93 - PubMed
  11. J Cell Sci. 2002 Jul 15;115(Pt 14):2817-28 - PubMed
  12. Int J Biochem Cell Biol. 1997 Aug-Sep;29(8-9):1063-70 - PubMed
  13. Micron. 2001 Feb;32(2):185-200 - PubMed
  14. J Cell Biol. 2001 Mar 5;152(5):1045-56 - PubMed
  15. J Cell Sci. 1991 Aug;99 ( Pt 4):797-807 - PubMed
  16. J Muscle Res Cell Motil. 2002;23(5-6):581-96 - PubMed
  17. Biochem J. 1983 May 1;211(2):303-11 - PubMed
  18. Biochim Biophys Acta. 2001 Nov 26;1550(1):6-19 - PubMed
  19. J Biomed Mater Res. 1981 May;15(3):363-81 - PubMed
  20. Mol Biol Cell. 2000 May;11(5):1499-507 - PubMed
  21. J Biol Chem. 2003 Sep 5;278(36):34605-16 - PubMed
  22. J Biomed Mater Res A. 2003 Aug 1;66(2):247-59 - PubMed
  23. J Am Chem Soc. 2002 Sep 11;124(36):10648-9 - PubMed
  24. J Ultrastruct Mol Struct Res. 1988 Sep;100(3):224-34 - PubMed
  25. J Colloid Interface Sci. 1997 Jul 15;191(2):378-83 - PubMed
  26. Biol Cell. 1998 Jun;90(3):223-8 - PubMed
  27. Colloids Surf B Biointerfaces. 2000 Dec 30;19(4):315-324 - PubMed
  28. J Mol Biol. 2003 Jul 4;330(2):297-307 - PubMed
  29. J Mol Biol. 2003 Sep 5;332(1):183-93 - PubMed
  30. J Biol Chem. 2002 Jan 18;277(3):1949-56 - PubMed
  31. Biochem J. 1999 May 15;340 ( Pt 1):171-81 - PubMed
  32. J Biomed Mater Res A. 2003 Feb 1;64(2):349-56 - PubMed
  33. J Biol Chem. 2004 May 28;279(22):23748-58 - PubMed
  34. J Cell Biol. 1998 May 4;141(3):829-37 - PubMed
  35. Matrix Biol. 2002 Mar;21(2):139-47 - PubMed

Substances

MeSH terms

Publication Types