Display options
Share it on

Clin Auton Res. 1992 Jun;2(3):201-8. doi: 10.1007/BF01818963.

Muscle chemoreflexes and exercise in humans.

Clinical autonomic research : official journal of the Clinical Autonomic Research Society

M J Joyner

Affiliations

  1. Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, MN 55905.

PMID: 1498567 DOI: 10.1007/BF01818963

Abstract

This review focuses on the role afferent nerves from the contracting muscles play in linking muscle metabolism to the cardiovascular adjustments during exercise by means of a 'muscle chemoreflex'. In the 1930s Alam and Smirk provided the first clear evidence that human (and animal) skeletal muscles are innervated by chemosensitive afferents that can evoke increases in arterial blood pressure. They proposed that the purpose of the increase in pressure was to improve blood flow to the active muscles. Subsequent studies have identified the slowly conducting group IV afferents as the major class of fibres participating in the sensory arm of this reflex. Most of these fibres travel via the dorsal roots to the ipsilateral spinal cord where they synapse in the substantia gelatinosa and release substance P or other peptide transmitters. The second order (or higher) neurons cross to the contralateral side of the spinal cord and travel rostrally to stimulate brainstem cardiovascular centres and increase arterial pressure. Current evidence favours the concept that substances associated with muscle acidosis provide the stimulus to the afferents. In humans, chemosensitive afferent activation causes a marked increase in vasoconstrictor efferent muscle sympathetic nerve activity. It is unclear if the muscle chemoreflex improves blood flow to 'underperfused' active muscles by augmenting arterial pressure, or if the increase in sympathetic outflow restrains metabolic vasodilatation to regulate arterial blood pressure during activities like running or cycling.

References

  1. Am J Cardiol. 1988 Sep 9;62(8):58E-62E - PubMed
  2. Med Sci Sports Exerc. 1992 Jan;24(1):30-7 - PubMed
  3. J Physiol. 1972 Jul;224(1):173-86 - PubMed
  4. J Appl Physiol (1985). 1990 Aug;69(2):407-18 - PubMed
  5. Brain Res. 1973 Mar 15;51:307-18 - PubMed
  6. J Clin Invest. 1988 Oct;82(4):1301-5 - PubMed
  7. Am J Physiol. 1983 Sep;245(3):H481-6 - PubMed
  8. J Clin Invest. 1987 Feb;79(2):508-16 - PubMed
  9. Am J Physiol. 1991 Nov;261(5 Pt 2):H1545-53 - PubMed
  10. Acta Physiol Scand. 1984 Jul;121(3):277-82 - PubMed
  11. J Physiol. 1937 Jun 3;89(4):372-83 - PubMed
  12. Circulation. 1972 Aug;46(2):257-63 - PubMed
  13. J Appl Physiol (1985). 1990 Apr;68(4):1453-7 - PubMed
  14. Am J Physiol. 1991 Nov;261(5 Pt 2):H1653-8 - PubMed
  15. Brain Res. 1986 Sep 3;381(2):385-9 - PubMed
  16. Circ Res. 1990 Jun;66(6):1576-84 - PubMed
  17. Circ Res. 1977 Sep;41(3):332-41 - PubMed
  18. Acta Physiol Scand. 1990 Feb;138(2):145-53 - PubMed
  19. Exerc Sport Sci Rev. 1991;19:313-49 - PubMed
  20. J Clin Invest. 1992 Jun;89(6):1875-84 - PubMed
  21. J Appl Physiol (1985). 1991 Oct;71(4):1496-501 - PubMed
  22. Am Rev Respir Dis. 1987 Dec;136(6 Pt 2):S16-22 - PubMed
  23. J Appl Physiol (1985). 1990 Jun;68(6):2466-72 - PubMed
  24. Acta Physiol Scand Suppl. 1987;566:1-37 - PubMed
  25. Circulation. 1991 Nov;84(5):2034-9 - PubMed
  26. Am J Physiol. 1987 Nov;253(5 Pt 2):H1199-207 - PubMed
  27. Circ Res. 1985 Sep;57(3):461-9 - PubMed
  28. Acta Med Scand Suppl. 1967;472:146-67 - PubMed
  29. J Clin Invest. 1990 May;85(5):1444-9 - PubMed
  30. J Appl Physiol (1985). 1989 Nov;67(5):1801-6 - PubMed
  31. J Appl Physiol (1985). 1987 Aug;63(2):834-9 - PubMed
  32. Circ Res. 1989 Aug;65(2):468-76 - PubMed
  33. Circ Res. 1981 Jun;48(6 Pt 2):I3-10 - PubMed
  34. J Appl Physiol (1985). 1989 Jul;67(1):256-63 - PubMed

MeSH terms

Publication Types

Grant support