Display options
Share it on

Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5431-6. doi: 10.1073/pnas.0530308100. Epub 2003 Apr 17.

Characterization of cells and gene-targeted mice deficient for the p53-binding kinase homeodomain-interacting protein kinase 1 (HIPK1).

Proceedings of the National Academy of Sciences of the United States of America

Seiji Kondo, Ying Lu, Michael Debbas, Athena W Lin, Ildiko Sarosi, Annick Itie, Andrew Wakeham, JoAnn Tuan, Chris Saris, Gary Elliott, Weili Ma, Samuel Benchimol, Scott W Lowe, Tak Wah Mak, Sushil K Thukral

Affiliations

  1. Advanced Medical Discovery Institute, and Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, ON, Canada M5G 2C1.

PMID: 12702766 PMCID: PMC154362 DOI: 10.1073/pnas.0530308100

Abstract

The tumor suppressor p53 is regulated in part by binding to cellular proteins. We used p53 as bait in the yeast two-hybrid system and isolated homeodomain-interacting protein kinase 1 (HIPK1) as a p53-binding protein. Deletion analysis showed that amino acids 100-370 of p53 and amino acids 885-1093 of HIPK1 were sufficient for HIPK1-p53 interaction. HIPK1 was capable of autophosphorylation and specific serine phosphorylation of p53. The HIPK1 gene was highly expressed in human breast cancer cell lines and oncogenically transformed mouse embryonic fibroblasts. HIPK1 was localized to human chromosome band 1p13, a site frequently altered in cancers. Gene-targeted HIPK1-/- mice were grossly normal but oncogenically transformed HIPK1 -/- mouse embryonic fibroblasts exhibited reduced transcription of Mdm2 and were more susceptible than transformed HIPK1+/+ cells to apoptosis induced by DNA damage. Carcinogen-treated HIPK1 -/- mice developed fewer and smaller skin tumors than HIPK1+/+ mice. HIPK1 may thus play a role in tumorigenesis, perhaps by means of the regulation of p53 and/or Mdm2.

References

  1. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2345-9 - PubMed
  2. Nature. 1997 May 15;387(6630):296-9 - PubMed
  3. Oncogene. 1997 Sep 4;15(10):1179-89 - PubMed
  4. J Biol Chem. 1997 Oct 24;272(43):26799-802 - PubMed
  5. Development. 1998 Jun;125(12):2291-302 - PubMed
  6. EMBO J. 1999 Dec 15;18(24):7002-10 - PubMed
  7. Mol Cell Biol. 2000 Feb;20(3):741-8 - PubMed
  8. Nature. 1986 Jul 3-9;322(6074):78-80 - PubMed
  9. Mol Cell Biol. 1988 Jan;8(1):461-5 - PubMed
  10. Genes Chromosomes Cancer. 1990 Nov;2(4):278-89 - PubMed
  11. Oncogene. 1991 Apr;6(4):645-51 - PubMed
  12. Science. 1991 Jul 5;253(5015):49-53 - PubMed
  13. Methods Enzymol. 1991;201:110-49 - PubMed
  14. Nature. 1992 Jul 2;358(6381):80-3 - PubMed
  15. Cell. 1992 Jun 26;69(7):1237-45 - PubMed
  16. EMBO J. 1993 Feb;12(2):461-8 - PubMed
  17. Nature. 1993 Apr 29;362(6423):857-60 - PubMed
  18. J Biol Chem. 1994 Oct 28;269(43):26767-74 - PubMed
  19. Semin Cancer Biol. 1994 Jun;5(3):203-10 - PubMed
  20. Oncogene. 1995 Jul 6;11(1):49-57 - PubMed
  21. Genes Dev. 1996 May 1;10(9):1054-72 - PubMed
  22. J Biol Chem. 1996 Dec 6;271(49):31470-8 - PubMed
  23. Genes Dev. 1998 Jul 15;12(14):2102-7 - PubMed
  24. J Biol Chem. 1998 Oct 2;273(40):25875-9 - PubMed
  25. Genes Dev. 1998 Oct 1;12(19):2973-83 - PubMed
  26. Cell. 1998 Oct 2;95(1):5-8 - PubMed
  27. Oncogene. 1996 Dec 19;13(12):2527-39 - PubMed
  28. Cell. 1997 Feb 7;88(3):323-31 - PubMed
  29. J Biol Chem. 1999 Apr 2;274(14):9847-53 - PubMed

Substances

MeSH terms

Publication Types

Grant support